Stochastic Dynamic Matching in Graphs

Céline Comte

TU/e & LAAS-CNRS

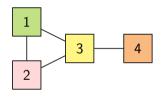
SOLACE Seminar — January 26 and February 16, 2023

Outline

- 1 Stochastic Matching: model, motivation, and notation
- Performance under the first-come-first-matched policy Comte, Stochastic Models (2022)
- Matching rates under an arbitrary policy Comte, Mathieu, and Bušić, arXiv:2112.14457 (2022)

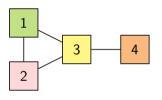
Outline

- 1 Stochastic Matching: model, motivation, and notation
- Performance under the first-come-first-matched policy Comte, Stochastic Models (2022)
- Matching rates under an arbitrary policy Comte, Mathieu, and Bušić, arXiv:2112.14457 (2022)

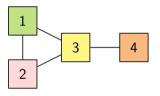


Graph G = (V, E) undirected, connected, without self-loop

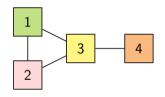
• Nodes $V = \{1, 2, \dots, n\} \rightarrow \text{item } \underline{\text{classes}}$



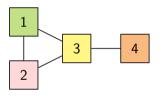
- Nodes $V = \{1, 2, \dots, n\} \rightarrow \text{item } \underline{\text{classes}}$
- Edges $E = \{1, 2, \dots, m\} \rightarrow \text{possible matches}$



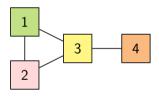
- Nodes $V = \{1, 2, \dots, n\} \rightarrow \text{item } \underline{\text{classes}}$
- Edges $E = \{1, 2, \dots, m\} \rightarrow \text{possible matches}$
- $V_i = \{ \text{neighbors of node } i \}$



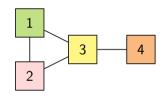
- Nodes $V = \{1, 2, \dots, n\} \rightarrow \text{item } \underline{\text{classes}}$
- Edges $E = \{1, 2, \dots, m\} \rightarrow \text{possible matches}$
- ullet $V_i = \{ ext{neighbors of node } i \} o V(U) = igcup_{i \in U} V_i ext{, } U \subseteq V$



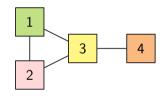
- Nodes $V = \{1, 2, \dots, n\} \rightarrow \text{item } \underline{\text{classes}}$
- Edges $E = \{1, 2, \dots, m\} \rightarrow \text{possible matches}$
- $V_i = \{ \text{neighbors of node } i \} \rightarrow V(U) = \bigcup_{i \in U} V_i, \ U \subseteq V$
- $E_i = \{ \text{edges with endpoint } i \}$

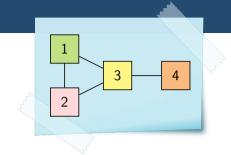


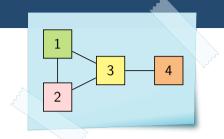
- Nodes $V = \{1, 2, \dots, n\} \rightarrow \text{item classes}$
- Edges $E = \{1, 2, \dots, m\} \rightarrow \text{possible matches}$
- $V_i = \{ \text{neighbors of node } i \} \rightarrow V(U) = \bigcup_{i \in U} V_i, \ U \subseteq V$
- $E_i = \{ \text{edges with endpoint } i \}$
- $\bullet \ \mathbb{I} = \{ \text{independent sets} \} = \{ \{1\}, \{2\}, \{3\}, \{4\}, \{1,4\}, \{2,4\} \}$

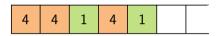


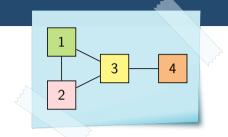
- Nodes $V = \{1, 2, \dots, n\} \rightarrow \text{item classes}$
- Edges $E = \{1, 2, \dots, m\} \rightarrow \mathsf{possible}$ matches
- $V_i = \{ \text{neighbors of node } i \} \rightarrow V(U) = \bigcup_{i \in U} V_i, \ U \subseteq V$
- $E_i = \{ \text{edges with endpoint } i \}$
- $\mathbb{I} = \{ \text{independent sets} \} = \{ \{1\}, \{2\}, \{3\}, \{4\}, \{1,4\}, \{2,4\} \}$
- $\bullet \ \mathbb{I}_0 = \mathbb{I} \cup \{\emptyset\}$

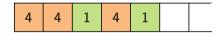


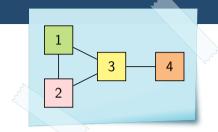


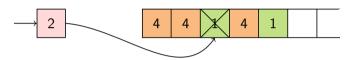


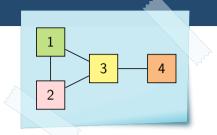




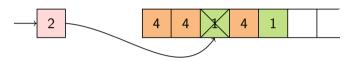


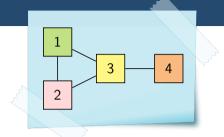






Class-i items arrive as a Poisson process with rate μ_i

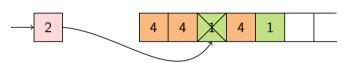


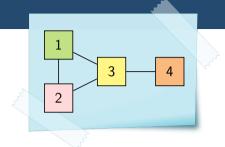


The system dynamics depend on:

- the graph G = (V, E),
- the vector $\mu=(\mu_1,\mu_2,\ldots,\mu_n)$,
- the matching policy.

Class-i items arrive as a Poisson process with rate μ_i





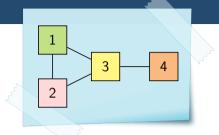
The system dynamics depend on:

- the graph G = (V, E),
- ullet the vector $\mu=(\mu_1,\mu_2,\ldots,\mu_n)$,
- the matching policy.

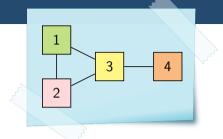
Notation:

- Arrival rate $\mu(U) = \sum_{i \in U} \mu_i$, $U \subseteq V$
- \bullet Load $\rho(I) = \frac{\mu(I)}{\mu(V(I))}$, $I \in \mathbb{I}$

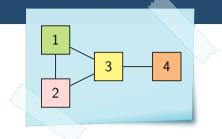
 Studied in (Bušić, Gupta, and Mairesse, 2013) and (Mairesse and Moyal, 2016)



- Studied in (Bušić, Gupta, and Mairesse, 2013) and (Mairesse and Moyal, 2016)
- The matching problem (G, μ) is **stabilizable**

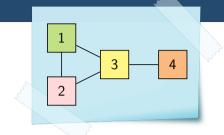


- Studied in (Bušić, Gupta, and Mairesse, 2013) and (Mairesse and Moyal, 2016)
- The matching problem (G, μ) is stabilizable if and only if $\rho(I) < 1$ for each $I \in \mathbb{I}$.



- Studied in (Bušić, Gupta, and Mairesse, 2013) and (Mairesse and Moval, 2016)
- The matching problem (G, μ) is stabilizable if and only if $\rho(I) < 1$ for each $I \in \mathbb{I}$.

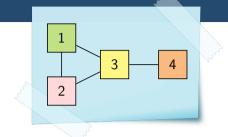
$$\begin{cases} \rho(\{1\}) = \frac{\mu_1}{\mu_2 + \mu_3} & \rho(\{2\}) = \frac{\mu_2}{\mu_1 + \mu_3} & \rho(\{3\}) = \frac{\mu_3}{\mu_1 + \mu_2 + \mu_4} \\ \rho(\{4\}) = \frac{\mu_4}{\mu_3} & \rho(\{1,4\}) = \frac{\mu_1 + \mu_4}{\mu_2 + \mu_3} & \rho(\{2,4\}) = \frac{\mu_2 + \mu_4}{\mu_1 + \mu_3} \end{cases}$$



$$\rho(\{3\}) = \frac{\mu_3}{\mu_1 + \mu_2 + \mu_4}$$
$$\rho(\{2, 4\}) = \frac{\mu_2 + \mu_4}{\mu_1 + \mu_3}$$

- Studied in (Bušić, Gupta, and Mairesse, 2013) and (Mairesse and Moval, 2016)
- The matching problem (G, μ) is stabilizable if and only if $\rho(I) < 1$ for each $I \in \mathbb{I}$.

$$\begin{cases} \rho(\{1\}) = \frac{\mu_1}{\mu_2 + \mu_3} & \rho(\{2\}) = \frac{\mu_2}{\mu_1 + \mu_3} & \rho(\{3\}) = \frac{\mu_3}{\mu_1 + \mu_2 + \mu_4} \\ \rho(\{4\}) = \frac{\mu_4}{\mu_3} & \rho(\{1,4\}) = \frac{\mu_1 + \mu_4}{\mu_2 + \mu_3} & \rho(\{2,4\}) = \frac{\mu_2 + \mu_4}{\mu_1 + \mu_3} \end{cases}$$



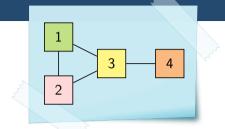
$$\rho(\{3\}) = \frac{\mu_3}{\mu_1 + \mu_2 + \mu_4}$$
$$\rho(\{2, 4\}) = \frac{\mu_2 + \mu_4}{\mu_1 + \mu_3}$$

 \bullet The compatibility graph G is stabilizable

- Studied in (Bušić, Gupta, and Mairesse, 2013) and (Mairesse and Moyal, 2016)
- The matching problem (G, μ) is **stabilizable** if and only if $\rho(I) < 1$ for each $I \in \mathbb{I}$.

$$\begin{cases} \rho(\{1\}) = \frac{\mu_1}{\mu_2 + \mu_3} & \rho(\{2\}) = \frac{\mu_2}{\mu_1 + \mu_3} & \rho(\{3\}) = \frac{\mu_3}{\mu_1 + \mu_2 + \mu_4} \\ \rho(\{4\}) = \frac{\mu_4}{\mu_3} & \rho(\{1,4\}) = \frac{\mu_1 + \mu_4}{\mu_2 + \mu_3} & \rho(\{2,4\}) = \frac{\mu_2 + \mu_4}{\mu_1 + \mu_3} \end{cases}$$

ullet The compatibility graph G is **stabilizable** if and only if G is non-bipartite.

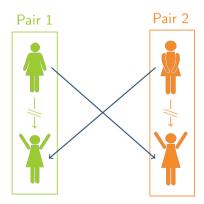


Applications

Paired kidney donation

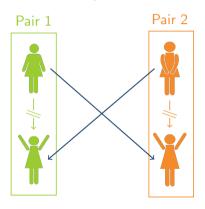
Applications

Paired kidney donation

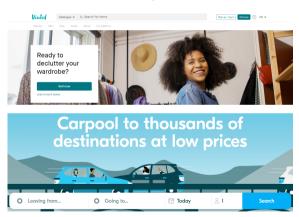


Applications

Paired kidney donation

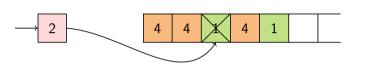


Collaborative economy

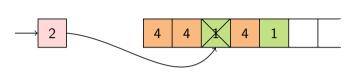


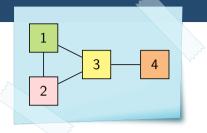
Outline

- 1 Stochastic Matching: model, motivation, and notation
- Performance under the first-come-first-matched policy Comte, Stochastic Models (2022)
- Matching rates under an arbitrary policy Comte, Mathieu, and Bušić, arXiv:2112.14457 (2022)

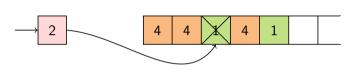


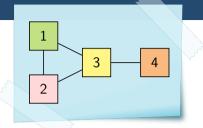




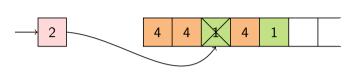


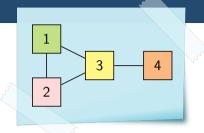
• Perceived as "fair", greedy, easy to implement, easy to analyze.





- Perceived as "fair", greedy, easy to implement, easy to analyze.
- (Moyal, Bušić, and Mairesse, 2021) derives:
 - the necessary and sufficient stability condition,
 - the product-form stationary distribution of the "detailed" state.

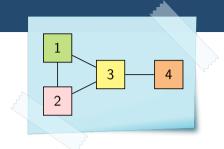




- Perceived as "fair", greedy, easy to implement, easy to analyze.
- (Moyal, Bušić, and Mairesse, 2021) derives:
 - the necessary and sufficient stability condition,
 - the product-form stationary distribution of the "detailed" state.

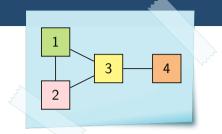
What is the long-term performance under first-come-first-matched?

• This is an order-independent loss queue!



- This is an order-independent loss queue!
- Stationary distribution of the set of unmatched classes:

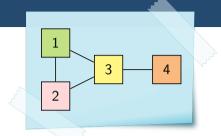
$$\pi(I) = \frac{\rho(I)}{1 - \rho(I)} \left(\sum_{i \in I} \frac{\mu_i}{\mu(I)} \pi(I \setminus \{i\}) \right), \quad I \in \mathbb{I}.$$



- This is an order-independent loss queue!
- Stationary distribution of the set of unmatched classes:

$$\pi(I) = \frac{\rho(I)}{1 - \rho(I)} \left(\sum_{i \in I} \frac{\mu_i}{\mu(I)} \pi(I \setminus \{i\}) \right), \quad I \in \mathbb{I}.$$

The value of $\pi(\emptyset)$ follows by normalization.

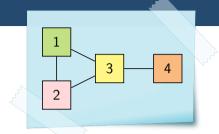


- This is an order-independent loss queue!
- Stationary distribution of the set of unmatched classes:

$$\pi(I) = \frac{\rho(I)}{1 - \rho(I)} \left(\sum_{i \in I} \frac{\mu_i}{\mu(I)} \pi(I \setminus \{i\}) \right), \quad I \in \mathbb{I}.$$

The value of $\pi(\emptyset)$ follows by normalization.

ullet Waiting probability of class i: $\omega_i = \sum_{I \in \mathbb{I}_0: i
otin V(I)} \pi(I).$



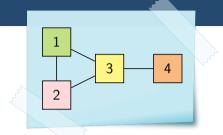
- This is an order-independent loss queue!
- Stationary distribution of the set of unmatched classes:

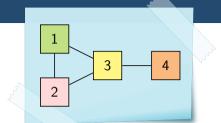
$$\pi(I) = \frac{\rho(I)}{1 - \rho(I)} \left(\sum_{i \in I} \frac{\mu_i}{\mu(I)} \pi(I \setminus \{i\}) \right), \quad I \in \mathbb{I}.$$

The value of $\pi(\emptyset)$ follows by normalization.

ullet Waiting probability of class i: $\omega_i = \sum_{I \in \mathbb{I}_0: i \notin V(I)} \pi(I).$

In particular, we obtain
$$\frac{\sum_{i \in V} \mu_i \omega_i}{\sum_{i \in V} \mu_i} = \frac{1}{2}$$
.

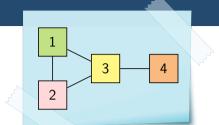




• Mean number of unmatched items:

$$L = \sum_{I \in \mathbb{I}} \ell(I),$$

with
$$\ell(I) = \frac{\pi(I)}{1 - \rho(I)} + \frac{\rho(I)}{1 - \rho(I)} \left(\sum_{i \in I} \frac{\mu_i}{\mu(I)} \ell(I \setminus \{i\}) \right).$$

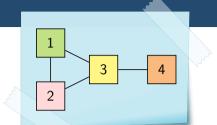


• Mean number of unmatched items:

$$L = \sum_{I \in \mathbb{I}} \ell(I),$$

$$\text{with} \quad \ell(I) = \frac{\pi(I)}{1 - \rho(I)} + \frac{\rho(I)}{1 - \rho(I)} \left(\sum_{i \in I} \frac{\mu_i}{\mu(I)} \ell(I \setminus \{i\}) \right).$$

The mean waiting time of an item follows from Little's law.

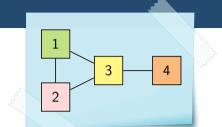


• Mean number of unmatched items:

$$L = \sum_{I \in \mathbb{I}} \ell(I),$$
 with
$$\ell(I) = \frac{\pi(I)}{1 - \rho(I)} + \frac{\rho(I)}{1 - \rho(I)} \left(\sum_{i \in I} \frac{\mu_i}{\mu(I)} \ell(I \setminus \{i\}) \right).$$

The mean waiting time of an item follows from Little's law.

More detailed formulas for the performance per class.



• Mean number of unmatched items:

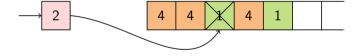
$$L = \sum_{I \in \mathbb{I}} \ell(I),$$

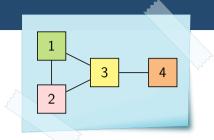
with
$$\ell(I) = \frac{\pi(I)}{1 - \rho(I)} + \frac{\rho(I)}{1 - \rho(I)} \left(\sum_{i \in I} \frac{\mu_i}{\mu(I)} \ell(I \setminus \{i\}) \right).$$

The mean waiting time of an item follows from Little's law.

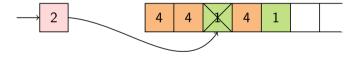
- More detailed formulas for the performance per class.
- Similar results for stochastic bipartite matching model (Comte & Dorsman, ASMTA, 2021).

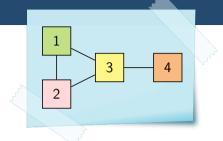
• Matching rate along edge $k = \{i, j\}$: mean number of matches per time unit between classes i and j.





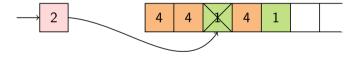
• Matching rate along edge $k = \{i, j\}$: mean number of matches per time unit between classes i and j.

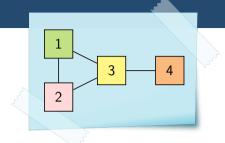




• Closed-form expression: consider a finer partition of the state space.

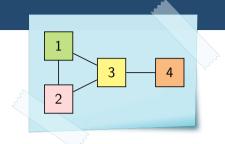
• Matching rate along edge $k = \{i, j\}$: mean number of matches per time unit between classes i and j.



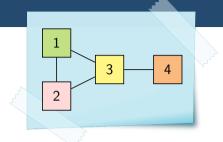


- Closed-form expression: consider a finer partition of the state space.
- Different approach in a few slides...

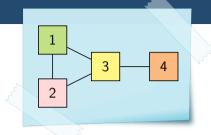
• Consider a maximal independent set $I \in \mathbb{I}$.



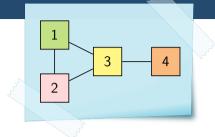
- Consider a maximal independent set $I \in \mathbb{I}$.
- \bullet When the load $\rho(I) = \frac{\mu(I)}{\mu(V(I))}$ tends to 1,



- \bullet When the load $\rho(I) = \frac{\mu(I)}{\mu(V(I))}$ tends to 1,
 - the set of unmatched classes is I with probability 1,
 - the classes in I wait with probability 1, while other classes wait with probability 0,
 - the mean number of unmatched items is $\sim \frac{\rho(I)}{1-\rho(I)}$.



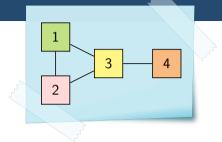
- Consider a maximal independent set $I \in \mathbb{I}$.
- When the load $ho(I) = \frac{\mu(I)}{\mu(V(I))}$ tends to 1,
 - the set of unmatched classes is I with probability 1,
 - the classes in I wait with probability 1,
 while other classes wait with probability 0,
 - the mean number of unmatched items is $\sim \frac{
 ho(I)}{1ho(I)}$.



M/M/1 multi-class queue

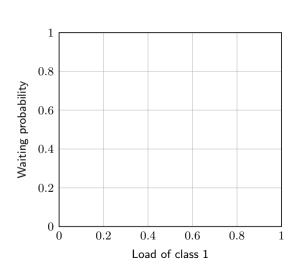
$$\begin{array}{ccc}
\mu_1 & \longrightarrow \\
\mu_4 & \longrightarrow
\end{array}$$

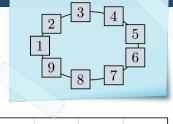
- Consider a maximal independent set $I \in \mathbb{I}$.
- \bullet When the load $\rho(I) = \frac{\mu(I)}{\mu(V(I))}$ tends to 1,
 - the set of unmatched classes is I with probability 1,
 - the classes in I wait with probability 1,
 while other classes wait with probability 0,
 - ullet the mean number of unmatched items is $\sim rac{
 ho(I)}{1ho(I)}.$
- Take-away: minimizing the maximal load is a good heuristic to optimize performance.

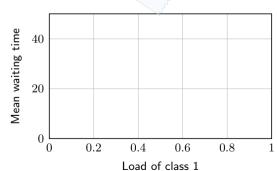


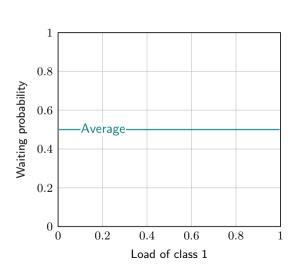
M/M/1 multi-class queue

$$\mu_1 \longrightarrow \mu_4 \longrightarrow \mu_4 \longrightarrow \mu_2 + \mu_3 \longrightarrow \mu_4 \longrightarrow \mu_4$$

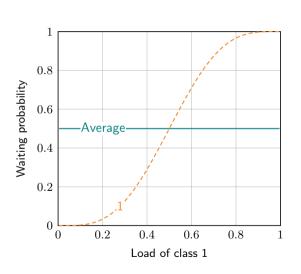


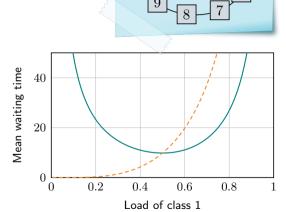


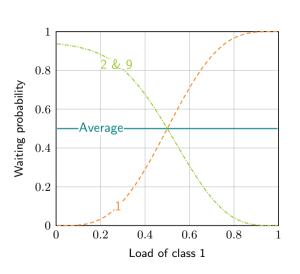


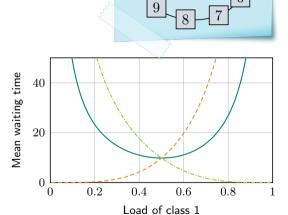


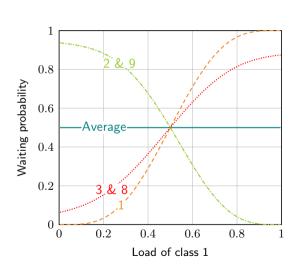


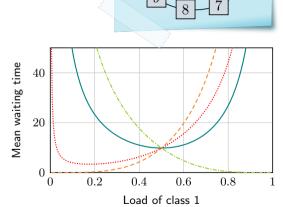


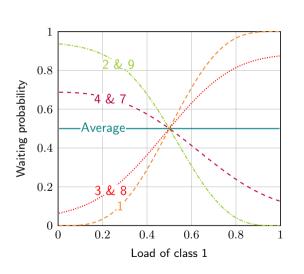


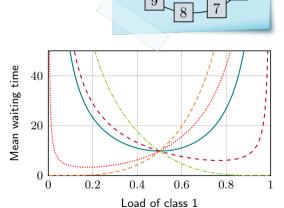


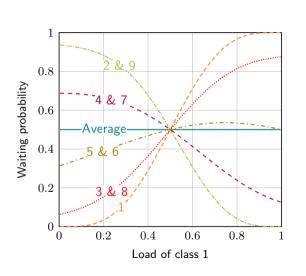


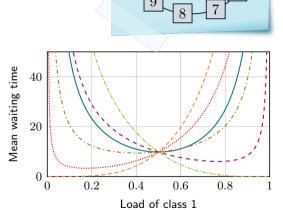




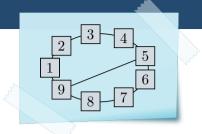




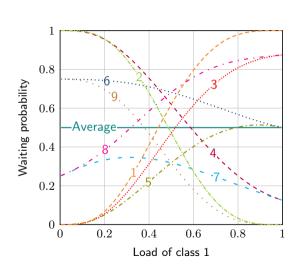


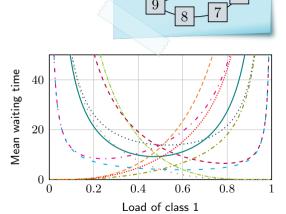


Numerical results: Cycle with a chord



Numerical results: Cycle with a chord



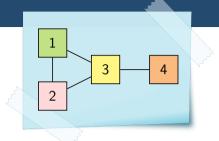


Outline

- Stochastic Matching: model, motivation, and notation
- Performance under the first-come-first-matched policy Comte, Stochastic Models (2022)
- Matching rates under an arbitrary policy Comte, Mathieu, and Bušić, arXiv:2112.14457 (2022)

Matching rates

• Matching rate λ_k along edge $k = \{i, j\}$: mean number of matches per time unit between classes i and j.



Matching rates

• Matching rate λ_k along edge $k = \{i, j\}$: mean number of matches per time unit between classes i and j.

1 3 4

- Matching rates are particularly interesting:
 - We often want to optimize a function of these matching rates.
 - They give intuition about the long-term impact of the matching policy.

Matching rates

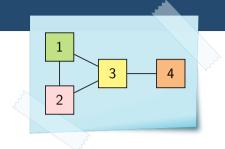
1 3 4

- Matching rate λ_k along edge $k = \{i, j\}$: mean number of matches per time unit between classes i and j.
- Matching rates are particularly interesting:
 - We often want to optimize a function of these matching rates.
 - They give intuition about the long-term impact of the matching policy.

Given a graph G=(V,E) and a vector $\mu=(\mu_1,\mu_2,\ldots,\mu_n)$ of arrival rates, what is the set of "feasible" vectors $\lambda=(\lambda_1,\lambda_2,\ldots,\lambda_m)$ of matching rates?

The matching rates satisfy the conservation law

$$\sum_{k \in E_i} \lambda_k = \mu_i, \quad i \in \{1, 2, \dots, n\}.$$



The matching rates satisfy the conservation law

$$\sum_{k \in E_i} \lambda_k = \mu_i, \quad i \in \{1, 2, \dots, n\}.$$



$$\begin{cases} \lambda_{1,2} + \lambda_{1,3} = \mu_1 \\ \lambda_{1,2} + \lambda_{2,3} = \mu_2 \\ \lambda_{1,3} + \lambda_{2,3} + \lambda_{3,4} = \mu_3 \\ \lambda_{3,4} = \mu_4 \end{cases}$$

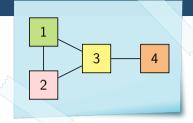
The matching rates satisfy the conservation law

$$\sum_{k \in E_i} \lambda_k = \mu_i, \quad i \in \{1, 2, \dots, n\},$$

that is, in matrix form,

$$A\lambda = \mu$$
,

where $A = (a_{i,k})$ is the incidence matrix of the compatibility graph.



$$\begin{cases} \lambda_{1,2} + \lambda_{1,3} = \mu_1 \\ \lambda_{1,2} + \lambda_{2,3} = \mu_2 \\ \lambda_{1,3} + \lambda_{2,3} + \lambda_{3,4} = \mu_3 \\ \lambda_{3,4} = \mu_4 \end{cases}$$

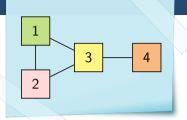
The matching rates satisfy the conservation law

$$\sum_{k \in E_i} \lambda_k = \mu_i, \quad i \in \{1, 2, \dots, n\},$$

that is, in matrix form,

$$A\lambda = \mu$$
,

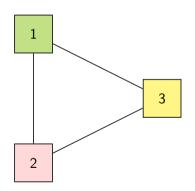
where $A = (a_{i,k})$ is the incidence matrix of the compatibility graph.



$$\begin{cases} \lambda_{1,2} + \lambda_{1,3} = \mu_1 \\ \lambda_{1,2} + \lambda_{2,3} = \mu_2 \\ \lambda_{1,3} + \lambda_{2,3} + \lambda_{3,4} = \mu_3 \\ \lambda_{3,4} = \mu_4 \end{cases}$$

$$\begin{bmatrix} 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \lambda_{1,2} \\ \lambda_{1,3} \\ \lambda_{2,3} \\ \lambda_{3,4} \end{bmatrix} = \begin{bmatrix} \mu_1 \\ \mu_2 \\ \mu_3 \\ \mu_4 \end{bmatrix}$$

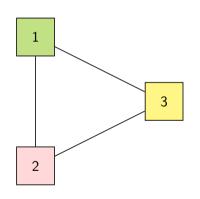
Example: Triangle graph



$$\begin{cases} \lambda_{1,2} + \lambda_{1,3} = \mu_1 \\ \lambda_{1,2} + \lambda_{2,3} = \mu_2 \\ \lambda_{1,3} + \lambda_{2,3} = \mu_3 \end{cases}$$

$$\begin{bmatrix} 1 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \end{bmatrix} \begin{bmatrix} \lambda_{1,2} \\ \lambda_{1,3} \\ \lambda_{2,3} \end{bmatrix} = \begin{bmatrix} \mu_1 \\ \mu_2 \\ \mu_3 \end{bmatrix}$$

Example: Triangle graph



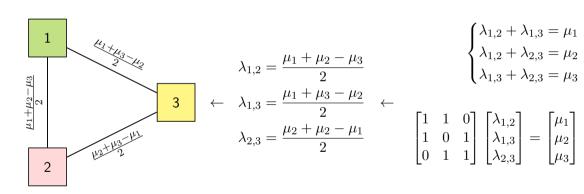
$$\lambda_{1,2} = \frac{\mu_1 + \mu_2 - \mu_3}{2}$$

$$\lambda_{1,3} = \frac{\mu_1 + \mu_3 - \mu_2}{2}$$

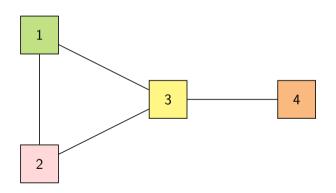
$$\lambda_{2,3} = \frac{\mu_2 + \mu_2 - \mu_1}{2}$$

$$\begin{bmatrix} 1 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \end{bmatrix} \begin{bmatrix} \lambda_{1,2} \\ \lambda_{1,3} \\ \lambda_{2,3} \end{bmatrix} = \begin{bmatrix} \mu_1 \\ \mu_2 \\ \mu_3 \end{bmatrix}$$

Example: Triangle graph



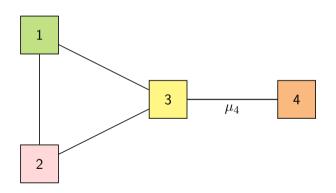
Example: Paw graph



$$\begin{cases} \lambda_{1,2} + \lambda_{1,3} = \mu_1 \\ \lambda_{1,2} + \lambda_{2,3} = \mu_2 \\ \lambda_{1,3} + \lambda_{2,3} + \lambda_{3,4} = \mu_3 \\ \lambda_{3,4} = \mu_4 \end{cases}$$

$$\begin{bmatrix} 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 1 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \lambda_{1,2} \\ \lambda_{1,3} \\ \lambda_{2,3} \\ \lambda_{3,4} \end{bmatrix} = \begin{bmatrix} \mu_1 \\ \mu_2 \\ \mu_3 \\ \mu_4 \end{bmatrix}$$

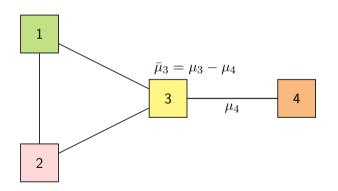
Example: Paw graph



$$\begin{cases} \lambda_{1,2} + \lambda_{1,3} = \mu_1 \\ \lambda_{1,2} + \lambda_{2,3} = \mu_2 \\ \lambda_{1,3} + \lambda_{2,3} + \lambda_{3,4} = \mu_3 \\ \lambda_{3,4} = \mu_4 \end{cases}$$

$$\begin{bmatrix} 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 1 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \lambda_{1,2} \\ \lambda_{1,3} \\ \lambda_{2,3} \\ \lambda_{3,4} \end{bmatrix} = \begin{bmatrix} \mu_1 \\ \mu_2 \\ \mu_3 \\ \mu_4 \end{bmatrix}$$

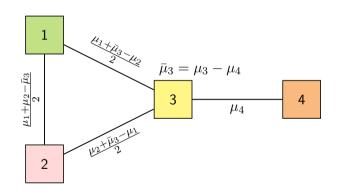
Example: Paw graph



$$\begin{cases} \lambda_{1,2} + \lambda_{1,3} = \mu_1 \\ \lambda_{1,2} + \lambda_{2,3} = \mu_2 \\ \lambda_{1,3} + \lambda_{2,3} + \lambda_{3,4} = \mu_3 \\ \lambda_{3,4} = \mu_4 \end{cases}$$

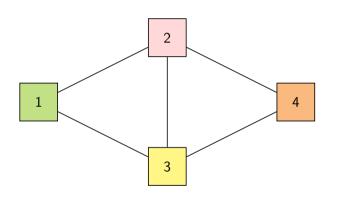
$$\begin{bmatrix} 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 1 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \lambda_{1,2} \\ \lambda_{1,3} \\ \lambda_{2,3} \\ \lambda_{3,4} \end{bmatrix} = \begin{bmatrix} \mu_1 \\ \mu_2 \\ \mu_3 \\ \mu_4 \end{bmatrix}$$

Example: Paw graph



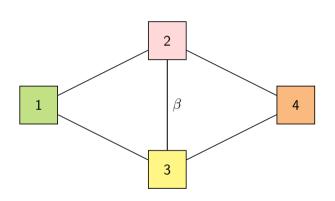
$$\begin{cases} \lambda_{1,2} + \lambda_{1,3} = \mu_1 \\ \lambda_{1,2} + \lambda_{2,3} = \mu_2 \\ \lambda_{1,3} + \lambda_{2,3} + \lambda_{3,4} = \mu_3 \\ \lambda_{3,4} = \mu_4 \end{cases}$$

$$\begin{bmatrix} 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 1 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \lambda_{1,2} \\ \lambda_{1,3} \\ \lambda_{2,3} \\ \lambda_{3,4} \end{bmatrix} = \begin{bmatrix} \mu_1 \\ \mu_2 \\ \mu_3 \\ \mu_4 \end{bmatrix}$$



$$\begin{cases} \lambda_{1,2} + \lambda_{1,3} = \mu_1 \\ \lambda_{1,2} + \lambda_{2,3} + \lambda_{2,4} = \mu_2 \\ \lambda_{1,3} + \lambda_{2,3} + \lambda_{3,4} = \mu_3 \\ \lambda_{2,4} + \lambda_{3,4} = \mu_4 \end{cases}$$

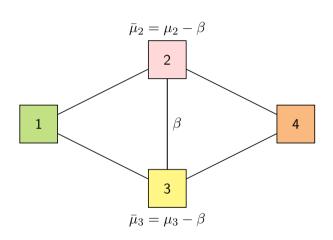
$$\begin{bmatrix} 1 & 1 & 0 & 0 & 0 \\ 1 & 0 & 1 & 1 & 0 \\ 0 & 1 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 1 \end{bmatrix} \begin{bmatrix} \lambda_{1,2} \\ \lambda_{1,3} \\ \lambda_{2,3} \\ \lambda_{2,4} \\ \lambda_{3,4} \end{bmatrix} = \begin{bmatrix} \mu_1 \\ \mu_2 \\ \mu_3 \\ \mu_4 \end{bmatrix}$$



$$\beta = \frac{1}{2}(\mu_2 + \mu_3 - \mu_1 - \mu_4)$$

$$\begin{cases} \lambda_{1,2} + \lambda_{1,3} = \mu_1 \\ \lambda_{1,2} + \lambda_{2,3} + \lambda_{2,4} = \mu_2 \\ \lambda_{1,3} + \lambda_{2,3} + \lambda_{3,4} = \mu_3 \\ \lambda_{2,4} + \lambda_{3,4} = \mu_4 \end{cases}$$

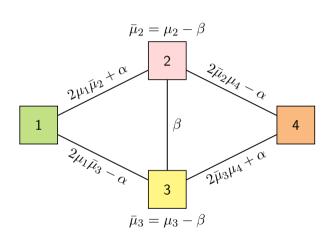
$$\begin{bmatrix} 1 & 1 & 0 & 0 & 0 \\ 1 & 0 & 1 & 1 & 0 \\ 0 & 1 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 1 \end{bmatrix} \begin{bmatrix} \lambda_{1,2} \\ \lambda_{1,3} \\ \lambda_{2,3} \\ \lambda_{2,4} \\ \lambda_{3,4} \end{bmatrix} = \begin{bmatrix} \mu_1 \\ \mu_2 \\ \mu_3 \\ \mu_4 \end{bmatrix}$$



$$\beta = \frac{1}{2}(\mu_2 + \mu_3 - \mu_1 - \mu_4)$$
$$\mu_1 + \mu_4 = \bar{\mu}_2 + \bar{\mu}_3 = \frac{1}{2}$$
$$\lambda_{1,2} + \lambda_{1,3} = \mu_1$$

$$\begin{cases} \lambda_{1,2} + \lambda_{1,3} = \mu_1 \\ \lambda_{1,2} + \lambda_{2,3} + \lambda_{2,4} = \mu_2 \\ \lambda_{1,3} + \lambda_{2,3} + \lambda_{3,4} = \mu_3 \\ \lambda_{2,4} + \lambda_{3,4} = \mu_4 \end{cases}$$

$$\begin{bmatrix} 1 & 1 & 0 & 0 & 0 \\ 1 & 0 & 1 & 1 & 0 \\ 0 & 1 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 1 \end{bmatrix} \begin{bmatrix} \lambda_{1,2} \\ \lambda_{1,3} \\ \lambda_{2,3} \\ \lambda_{2,4} \\ \lambda_{2,4} \end{bmatrix} = \begin{bmatrix} \mu_1 \\ \mu_2 \\ \mu_3 \\ \mu_4 \end{bmatrix}$$



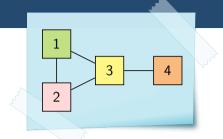
$$\beta = \frac{1}{2}(\mu_2 + \mu_3 - \mu_1 - \mu_4)$$

$$\mu_1 + \mu_4 = \bar{\mu}_2 + \bar{\mu}_3 = \frac{1}{2}$$

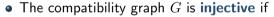
$$\begin{cases} \lambda_{1,2} + \lambda_{1,3} = \mu_1 \\ \lambda_{1,2} + \lambda_{2,3} + \lambda_{2,4} = \mu_2 \\ \lambda_{1,3} + \lambda_{2,3} + \lambda_{3,4} = \mu_3 \\ \lambda_{2,4} + \lambda_{3,4} = \mu_4 \end{cases}$$

$$\begin{bmatrix} 1 & 1 & 0 & 0 & 0 \\ 1 & 0 & 1 & 1 & 0 \\ 0 & 1 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 1 \end{bmatrix} \begin{bmatrix} \lambda_{1,2} \\ \lambda_{1,3} \\ \lambda_{2,3} \\ \lambda_{2,4} \\ \lambda_{3,4} \end{bmatrix} = \begin{bmatrix} \mu_1 \\ \mu_2 \\ \mu_3 \\ \mu_4 \end{bmatrix}$$

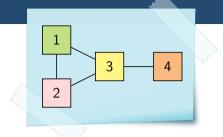
- \bullet The compatibility graph G is surjective if
 - The linear application $\lambda \in \mathbb{R}^m \mapsto A\lambda \in \mathbb{R}^n$ is surjective.



- \bullet The compatibility graph G is surjective if
 - The linear application $\lambda \in \mathbb{R}^m \mapsto A\lambda \in \mathbb{R}^n$ is surjective.



• The linear application $\lambda \in \mathbb{R}^m \mapsto A\lambda \in \mathbb{R}^n$ is injective.

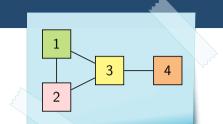


1 3 4

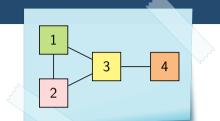
- The compatibility graph G is surjective if
 - The linear application $\lambda \in \mathbb{R}^m \mapsto A\lambda \in \mathbb{R}^n$ is surjective.

- The compatibility graph G is **injective** if
 - The linear application $\lambda \in \mathbb{R}^m \mapsto A\lambda \in \mathbb{R}^n$ is injective.

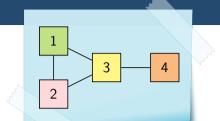
ullet The compatibility graph G is **bijective** if G is surjective and injective.



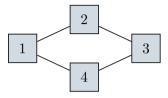
- The compatibility graph G is surjective if
 - The linear application $\lambda \in \mathbb{R}^m \mapsto A\lambda \in \mathbb{R}^n$ is surjective.
 - The conservation law $A\lambda = \mu$ has at least one solution, for each $\mu \in \mathbb{R}^n$.
- The compatibility graph G is **injective** if
 - The linear application $\lambda \in \mathbb{R}^m \mapsto A\lambda \in \mathbb{R}^n$ is injective.
 - The conservation law $A\lambda = \mu$ has at most one solution, for each $\mu \in \mathbb{R}^n$.
- ullet The compatibility graph G is **bijective** if G is surjective and injective.



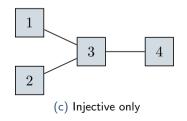
- The compatibility graph G is surjective if
 - The linear application $\lambda \in \mathbb{R}^m \mapsto A\lambda \in \mathbb{R}^n$ is surjective.
 - The conservation law $A\lambda = \mu$ has at least one solution, for each $\mu \in \mathbb{R}^n$.
 - The compatibility graph G is non-bipartite (i.e., contains at least one odd cycle).
- The compatibility graph G is **injective** if
 - The linear application $\lambda \in \mathbb{R}^m \mapsto A\lambda \in \mathbb{R}^n$ is injective.
 - The conservation law $A\lambda = \mu$ has at most one solution, for each $\mu \in \mathbb{R}^n$.
- ullet The compatibility graph G is **bijective** if G is surjective and injective.

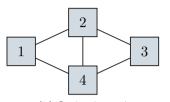


- The compatibility graph G is surjective if
 - The linear application $\lambda \in \mathbb{R}^m \mapsto A\lambda \in \mathbb{R}^n$ is surjective.
 - The conservation law $A\lambda = \mu$ has at least one solution, for each $\mu \in \mathbb{R}^n$.
 - The compatibility graph G is non-bipartite (i.e., contains at least one odd cycle).
- The compatibility graph G is **injective** if
 - The linear application $\lambda \in \mathbb{R}^m \mapsto A\lambda \in \mathbb{R}^n$ is injective.
 - The conservation law $A\lambda = \mu$ has at most one solution, for each $\mu \in \mathbb{R}^n$.
 - The compatibility graph G contains at most one cycle and this cycle is odd.
- ullet The compatibility graph G is **bijective** if G is surjective and injective.

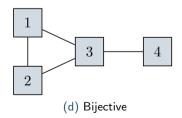


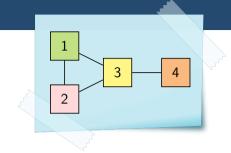
(a) Neither surjective, nor injective





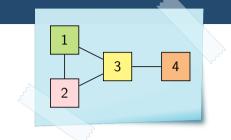
(b) Surjective-only



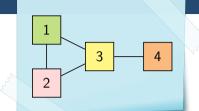


$$\begin{bmatrix} 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \lambda_{1,2} \\ \lambda_{1,3} \\ \lambda_{2,3} \\ \lambda_{3,4} \end{bmatrix} = \begin{bmatrix} \mu_1 \\ \mu_2 \\ \mu_3 \\ \mu_4 \end{bmatrix}$$

• A matching problem (G, μ) is **stabilizable** if and only if $\rho(I) < 1$ for each $I \in \mathbb{I}$.

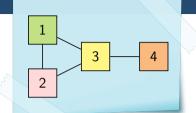


$$\begin{bmatrix} 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \lambda_{1,2} \\ \lambda_{1,3} \\ \lambda_{2,3} \\ \lambda_{3,4} \end{bmatrix} = \begin{bmatrix} \mu_1 \\ \mu_2 \\ \mu_3 \\ \mu_4 \end{bmatrix}$$



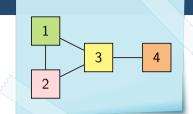
• A matching problem (G, μ) is stabilizable if and only if the conservation law $A\lambda = \mu$ has a solution $\lambda > 0$.

$$\begin{bmatrix} 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \lambda_{1,2} \\ \lambda_{1,3} \\ \lambda_{2,3} \\ \lambda_{3,4} \end{bmatrix} = \begin{bmatrix} \mu_1 \\ \mu_2 \\ \mu_3 \\ \mu_4 \end{bmatrix}$$



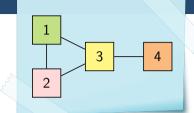
- A matching problem (G, μ) is stabilizable if and only if the conservation law $A\lambda = \mu$ has a solution $\lambda > 0$.
 - \odot The time complexity to verify this condition is polynomial in n and m.

$$\begin{bmatrix} 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \lambda_{1,2} \\ \lambda_{1,3} \\ \lambda_{2,3} \\ \lambda_{3,4} \end{bmatrix} = \begin{bmatrix} \mu_1 \\ \mu_2 \\ \mu_3 \\ \mu_4 \end{bmatrix}$$



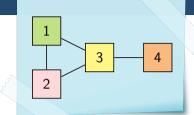
- A matching problem (G, μ) is stabilizable if and only if the conservation law Aλ = μ has a solution λ > 0.
 The time complexity to verify this condition is polynomial in n and m.
- ullet A compatibility graph G is **stabilizable** if and only if G is non-bipartite.

$$\begin{bmatrix} 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \lambda_{1,2} \\ \lambda_{1,3} \\ \lambda_{2,3} \\ \lambda_{3,4} \end{bmatrix} = \begin{bmatrix} \mu_1 \\ \mu_2 \\ \mu_3 \\ \mu_4 \end{bmatrix}$$



- A matching problem (G, μ) is stabilizable if and only if the conservation law Aλ = μ has a solution λ > 0.
 The time complexity to verify this condition is polynomial in n and m.
- ullet A compatibility graph G is stabilizable if and only if G is surjective.

$$\begin{bmatrix} 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \lambda_{1,2} \\ \lambda_{1,3} \\ \lambda_{2,3} \\ \lambda_{3,4} \end{bmatrix} = \begin{bmatrix} \mu_1 \\ \mu_2 \\ \mu_3 \\ \mu_4 \end{bmatrix}$$



- A matching problem (G, μ) is stabilizable if and only if the conservation law $A\lambda = \mu$ has a solution $\lambda > 0$.
 - \odot The time complexity to verify this condition is polynomial in n and m.
- ullet A compatibility graph G is stabilizable if and only if G is surjective.
 - The rank of matrix A is n. The nullity of matrix A is d=m-n (according to the rank-nullity theorem).

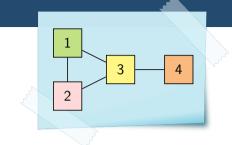
$$\begin{bmatrix} 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \lambda_{1,2} \\ \lambda_{1,3} \\ \lambda_{2,3} \\ \lambda_{3,4} \end{bmatrix} = \begin{bmatrix} \mu_1 \\ \mu_2 \\ \mu_3 \\ \mu_4 \end{bmatrix}$$

Affine space of solutions

• The solution set of the conservation law $A\lambda = \mu$ is

$$\Lambda = \left\{ \lambda^{\circ} + \alpha_1 b_1 + \alpha_2 b_2 + \ldots + \alpha_d b_d : \alpha \in \mathbb{R}^d \right\}$$

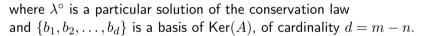
where λ° is a particular solution of the conservation law and $\{b_1,b_2,\ldots,b_d\}$ is a basis of $\mathrm{Ker}(A)$, of cardinality d=m-n.



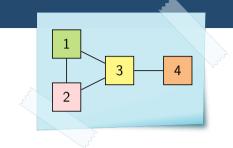
Affine space of solutions

• The solution set of the conservation law $A\lambda = \mu$ is

$$\Lambda = \left\{ \lambda^{\circ} + \alpha_1 b_1 + \alpha_2 b_2 + \ldots + \alpha_d b_d : \alpha \in \mathbb{R}^d \right\}$$

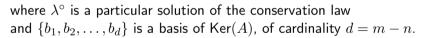


• We borrowed an algorithm from (Doob, 1973) to build a basis of Ker(A).

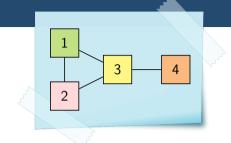


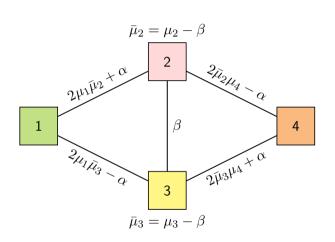
Affine space of solutions

$$\Lambda = \left\{ \lambda^{\circ} + \alpha_1 b_1 + \alpha_2 b_2 + \ldots + \alpha_d b_d : \alpha \in \mathbb{R}^d \right\}$$



- We borrowed an algorithm from (Doob, 1973) to build a basis of Ker(A).
- We use two coordinate systems:
 - Edge coordinates $\lambda = (\lambda_1, \lambda_2, \dots, \lambda_m) \in \mathbb{R}^m$.
 - Kernel coordinates $\alpha = (\alpha_1, \alpha_2, \dots, \alpha_d) \in \mathbb{R}^d$.





$$\beta = \frac{1}{2}(\mu_2 + \mu_3 - \mu_1 - \mu_4)$$
$$\mu_1 + \mu_4 = \bar{\mu}_2 + \bar{\mu}_3 = \frac{1}{2}$$
$$\begin{cases} \lambda_{1,2} + \lambda_{1,3} = \mu_1 \\ \lambda_{1,2} + \lambda_{2,3} + \lambda_{2,4} = \mu_2 \\ \lambda_{1,3} + \lambda_{2,3} + \lambda_{3,4} = \mu_3 \\ \lambda_{2,4} + \lambda_{3,4} = \mu_4 \end{cases}$$

$$\begin{bmatrix} 1 & 1 & 0 & 0 & 0 \\ 1 & 0 & 1 & 1 & 0 \\ 0 & 1 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 1 \end{bmatrix} \begin{bmatrix} \lambda_{1,2} \\ \lambda_{1,3} \\ \lambda_{2,3} \\ \lambda_{2,4} \\ \lambda_{3,4} \end{bmatrix} = \begin{bmatrix} \mu_1 \\ \mu_2 \\ \mu_3 \\ \mu_4 \end{bmatrix}$$

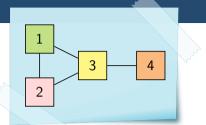
3 4

• The set of non-negative solutions of the conservation law is

$$\Lambda_{\geq 0} = \Lambda \cap \mathbb{R}_+^m$$

$$\approx \left\{ \alpha \in \mathbb{R}^d : \lambda^\circ + \alpha_1 b_1 + \alpha_2 b_2 + \ldots + \alpha_d b_d \geq 0 \right\}.$$

This is a d-dimensional convex polytope.



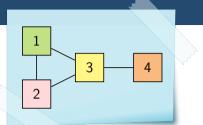
• The set of non-negative solutions of the conservation law is

$$\Lambda_{\geq 0} = \Lambda \cap \mathbb{R}_+^m$$

$$\approx \left\{ \alpha \in \mathbb{R}^d : \lambda^\circ + \alpha_1 b_1 + \alpha_2 b_2 + \ldots + \alpha_d b_d \geq 0 \right\}.$$

This is a d-dimensional convex polytope.

ullet The subgraph restricted to the support of a vertex of $\Lambda_{\geq 0}$ is injective



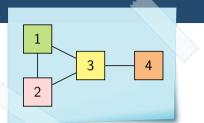
• The set of non-negative solutions of the conservation law is

$$\Lambda_{\geq 0} = \Lambda \cap \mathbb{R}_+^m$$

$$\approx \left\{ \alpha \in \mathbb{R}^d : \lambda^\circ + \alpha_1 b_1 + \alpha_2 b_2 + \ldots + \alpha_d b_d \geq 0 \right\}.$$

This is a d-dimensional convex polytope.

- ullet The subgraph restricted to the support of a vertex of $\Lambda_{\geq 0}$ is injective:
 - If the subgraph is bijective, the vertex is achieved by any stable policy applied to the subgraph.



• The set of non-negative solutions of the conservation law is

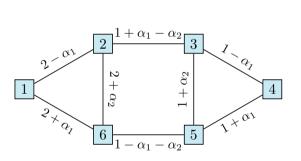
$$\Lambda_{\geq 0} = \Lambda \cap \mathbb{R}_+^m$$

$$\approx \left\{ \alpha \in \mathbb{R}^d : \lambda^\circ + \alpha_1 b_1 + \alpha_2 b_2 + \ldots + \alpha_d b_d \geq 0 \right\}.$$

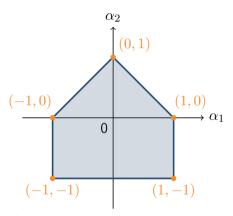
This is a d-dimensional convex polytope.

- ullet The subgraph restricted to the support of a vertex of $\Lambda_{\geq 0}$ is injective:
 - If the subgraph is bijective, the vertex is achieved by any stable policy applied to the subgraph.
 - If the subgraph is injective but not surjective, it's more complicated...

Example: Codomino graph

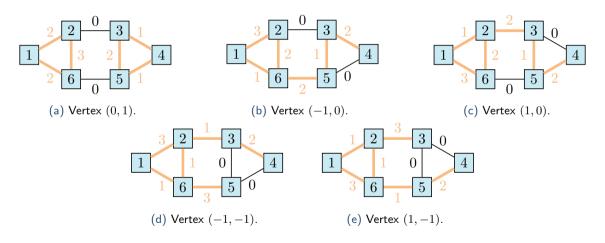


(a) Solution of the conservation law $A\lambda = \mu$.



(b) Polytope $\Lambda_{\geq 0}$ in kernel coordinates.

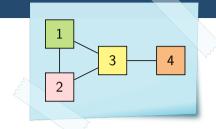
Example: Codomino graph



Conclusion

Take-away

- Stochastic dynamic matching problem associated with organ transplant programs and assembly systems.
- Performance evaluation under the first-come-first-matched policy.
- Analysis of the matching rates under an arbitrary matching policy.



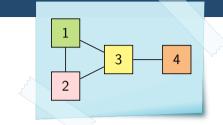
Conclusion

Take-away

- Stochastic dynamic matching problem associated with organ transplant programs and assembly systems.
- Performance evaluation under the first-come-first-matched policy.
- Analysis of the matching rates under an arbitrary matching policy.

Future works

- More realistic model: hypergraph? state-dependent arrival rates?
- Optimization and learning: graph structure? arrival rates? policy?



References

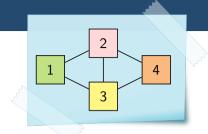
1 3 4

C. Comte. "Stochastic non-bipartite matching models and order-independent loss queues". *Stochastic Models* 38.1 (Jan. 2022), pp. 1–36

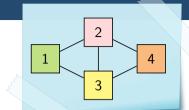
C. Comte and J.-P. Dorsman. "Performance Evaluation of Stochastic Bipartite Matching Models". *Performance Engineering and Stochastic Modeling*. Lecture Notes in Computer Science. Springer, 2021, pp. 425–440

C. Comte, F. Mathieu, and A. Bušić. "Stochastic dynamic matching: A mixed graph-theory and linear-algebra approach". (Jan. 2022). arXiv: 2112.14457

ullet A vector $\lambda \in \mathbb{R}^m$ belongs to $\operatorname{Ker}(A)$ if and only if $A\lambda = 0$.



ullet A vector $\lambda \in \mathbb{R}^m$ belongs to $\operatorname{Ker}(A)$ if and only if $A\lambda = 0$.



$$\begin{cases} \lambda_{1,2} + \lambda_{1,3} = 0 \\ \lambda_{1,2} + \lambda_{2,3} + \lambda_{2,4} = 0 \\ \lambda_{1,3} + \lambda_{2,3} + \lambda_{3,4} = 0 \\ \lambda_{2,4} + \lambda_{3,4} = 0 \end{cases}$$

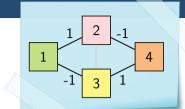
$$\begin{bmatrix} 1 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 1 \end{bmatrix} \begin{bmatrix} \lambda_{1,2} \\ \lambda_{1,3} \\ \lambda_{2,3} \\ \lambda_{2,4} \\ \lambda_{3,4} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

• A vector $\lambda \in \mathbb{R}^m$ belongs to $\operatorname{Ker}(A)$ if and only if $A\lambda = 0$.

$$\begin{cases} \lambda_{1,2} + \lambda_{1,3} = 0 \\ \lambda_{1,2} + \lambda_{2,3} + \lambda_{2,4} = 0 \\ \lambda_{1,3} + \lambda_{2,3} + \lambda_{3,4} = 0 \\ \lambda_{2,4} + \lambda_{3,4} = 0 \end{cases}$$

$$\begin{bmatrix} 1 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 1 \end{bmatrix} \begin{bmatrix} \lambda_{1,2} \\ \lambda_{1,3} \\ \lambda_{2,3} \\ \lambda_{2,4} \\ \lambda_{3,4} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

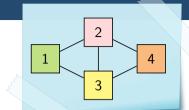
• A vector $\lambda \in \mathbb{R}^m$ belongs to $\operatorname{Ker}(A)$ if and only if $A\lambda = 0$.



$$\begin{cases} \lambda_{1,2} + \lambda_{1,3} = 0 \\ \lambda_{1,2} + \lambda_{2,3} + \lambda_{2,4} = 0 \\ \lambda_{1,3} + \lambda_{2,3} + \lambda_{3,4} = 0 \\ \lambda_{2,4} + \lambda_{3,4} = 0 \end{cases}$$

$$\begin{bmatrix} 1 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 1 \end{bmatrix} \begin{bmatrix} \lambda_{1,2} \\ \lambda_{1,3} \\ \lambda_{2,3} \\ \lambda_{3,4} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

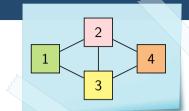
• A vector $\lambda \in \mathbb{R}^m$ belongs to $\operatorname{Ker}(A)$ if and only if $A\lambda = 0$.



$$\begin{cases} \lambda_{1,2} + \lambda_{1,3} = 0 \\ \lambda_{1,2} + \lambda_{2,3} + \lambda_{2,4} = 0 \\ \lambda_{1,3} + \lambda_{2,3} + \lambda_{3,4} = 0 \\ \lambda_{2,4} + \lambda_{3,4} = 0 \end{cases}$$

$$\begin{bmatrix} 1 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 1 \end{bmatrix} \begin{bmatrix} \lambda_{1,2} \\ \lambda_{1,3} \\ \lambda_{2,3} \\ \lambda_{2,4} \\ \lambda_{3,4} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

- A vector $\lambda \in \mathbb{R}^m$ belongs to $\operatorname{Ker}(A)$ if and only if $A\lambda = 0$.
- ullet Algorithm to construct a basis of $\operatorname{Ker}(A)$ (Doob, 1973)



$$\begin{cases} \lambda_{1,2} + \lambda_{1,3} = 0 \\ \lambda_{1,2} + \lambda_{2,3} + \lambda_{2,4} = 0 \\ \lambda_{1,3} + \lambda_{2,3} + \lambda_{3,4} = 0 \\ \lambda_{2,4} + \lambda_{3,4} = 0 \end{cases}$$

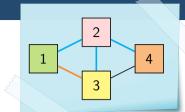
$$\begin{bmatrix} 1 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 1 \end{bmatrix} \begin{bmatrix} \lambda_{1,2} \\ \lambda_{1,3} \\ \lambda_{2,3} \\ \lambda_{2,4} \\ \lambda_{3,4} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

- A vector $\lambda \in \mathbb{R}^m$ belongs to $\operatorname{Ker}(A)$ if and only if $A\lambda = 0$.
- Algorithm to construct a basis of Ker(A) (Doob, 1973)
 - **1** Build a spanning tree T of G.

$$\begin{cases} \lambda_{1,2} + \lambda_{1,3} = 0 \\ \lambda_{1,2} + \lambda_{2,3} + \lambda_{2,4} = 0 \\ \lambda_{1,3} + \lambda_{2,3} + \lambda_{3,4} = 0 \\ \lambda_{2,4} + \lambda_{3,4} = 0 \end{cases}$$

$$\begin{bmatrix} 1 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 1 \end{bmatrix} \begin{bmatrix} \lambda_{1,2} \\ \lambda_{1,3} \\ \lambda_{2,3} \\ \lambda_{2,4} \\ \lambda_{3,4} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

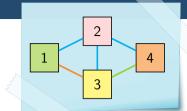
- A vector $\lambda \in \mathbb{R}^m$ belongs to Ker(A) if and only if $A\lambda = 0$.
- Algorithm to construct a basis of Ker(A) (Doob, 1973)
 - **1** Build a spanning tree T of G.
 - ② Identify an edge $k \notin T$ such that $T \cup \{k\}$ contains an odd cycle.



$$\begin{cases} \lambda_{1,2} + \lambda_{1,3} = 0 \\ \lambda_{1,2} + \lambda_{2,3} + \lambda_{2,4} = 0 \\ \lambda_{1,3} + \lambda_{2,3} + \lambda_{3,4} = 0 \\ \lambda_{2,4} + \lambda_{3,4} = 0 \end{cases}$$

$$\begin{bmatrix} 1 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 1 \end{bmatrix} \begin{bmatrix} \lambda_{1,2} \\ \lambda_{1,3} \\ \lambda_{2,3} \\ \lambda_{2,4} \\ \lambda_{3,4} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

- A vector $\lambda \in \mathbb{R}^m$ belongs to $\operatorname{Ker}(A)$ if and only if $A\lambda = 0$.
- Algorithm to construct a basis of Ker(A) (Doob, 1973)
 - Build a spanning tree T of G.
 - 2 Identify an edge $k \notin T$ such that $T \cup \{k\}$ contains an odd cycle.
 - **③** For each edge $l \notin (T \cup \{k\})$, build a kernel vector with support $\{l\} \subseteq S \subseteq T \cup \{k, l\}$



$$\begin{cases} \lambda_{1,2} + \lambda_{1,3} = 0 \\ \lambda_{1,2} + \lambda_{2,3} + \lambda_{2,4} = 0 \\ \lambda_{1,3} + \lambda_{2,3} + \lambda_{3,4} = 0 \\ \lambda_{2,4} + \lambda_{3,4} = 0 \end{cases}$$

$$\begin{bmatrix} 1 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 1 \end{bmatrix} \begin{bmatrix} \lambda_{1,2} \\ \lambda_{1,3} \\ \lambda_{2,3} \\ \lambda_{2,4} \\ \lambda_{3,4} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

- A vector $\lambda \in \mathbb{R}^m$ belongs to $\operatorname{Ker}(A)$ if and only if $A\lambda = 0$.
- Algorithm to construct a basis of Ker(A) (Doob, 1973)
 - Build a spanning tree T of G.
 - 2 Identify an edge $k \notin T$ such that $T \cup \{k\}$ contains an odd cycle.
 - **③** For each edge $l \notin (T \cup \{k\})$, build a kernel vector with support $\{l\} \subseteq S \subseteq T \cup \{k, l\}$
- The matching rate along an edge is unique if and only if this edge doesn't belong to any "generalized even cycle".

$$\begin{cases} \lambda_{1,2} + \lambda_{1,3} = 0\\ \lambda_{1,2} + \lambda_{2,3} + \lambda_{2,4} = 0\\ \lambda_{1,3} + \lambda_{2,3} + \lambda_{3,4} = 0\\ \lambda_{2,4} + \lambda_{3,4} = 0 \end{cases}$$

$$\begin{bmatrix} 1 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 1 \end{bmatrix} \begin{bmatrix} \lambda_{1,2} \\ \lambda_{1,3} \\ \lambda_{2,3} \\ \lambda_{2,4} \\ \lambda_{3,4} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$