Stochastic Dynamic Matching in Graphs

Céline Comte

TU/e & LAAS-CNRS

SOLACE Seminar — January 26 and February 16, 2023

TU UNIVERSITY OF LAAS
e TECHNOLOGY ﬁ yZ



@ Stochastic Matching: model, motivation, and notation

© Performance under the first-come-first-matched policy
Comte, Stochastic Models (2022)

© Matching rates under an arbitrary policy
Comte, Mathieu, and Busi¢, arXiv:2112.14457 (2022)

Céline Comte Stochastic Dynamic Matching in Graphs


https://doi.org/10.1080/15326349.2021.1962352
https://arxiv.org/abs/2112.14457

Outline

@ Stochastic Matching: model, motivation, and notation

Céline Comte Stochastic Dynamic Matching in Graphs 2 /30


https://doi.org/10.1080/15326349.2021.1962352
https://arxiv.org/abs/2112.14457

Compatibility graph

Graph G = (V, E)) undirected, connected, without self-loop

Céline Comte Stochastic Dynamic Matching in Graphs 3 /30



Compatibility graph

Graph G = (V, E)) undirected, connected, without self-loop

@ Nodes V' ={1,2,...,n} — item classes

Céline Comte Stochastic Dynamic Matching in Graphs 3 /30



Compatibility graph

Graph G = (V, E)) undirected, connected, without self-loop
@ Nodes V' ={1,2,...,n} — item classes

e Edges £ = {1,2,...,m} — possible matches 1

\ /

Céline Comte Stochastic Dynamic Matching in Graphs



Compatibility graph

Graph G = (V, E)) undirected, connected, without self-loop

@ Nodes V' ={1,2,...,n} — item classes

e Edges £ = {1,2,...,m} — possible matches 1 N

e V; = {neighbors of node i} 3 4
2 -

Céline Comte Stochastic Dynamic Matching in Graphs 3 /30



Compatibility graph

Graph G = (V, E)) undirected, connected, without self-loop

@ Nodes V' ={1,2,...,n} — item classes

e Edges £ = {1,2,...,m} — possible matches 1 N

e V; = {neighbors of node i} — V(U) = U;ciy Vi, U CV 3 4
2 -

Céline Comte Stochastic Dynamic Matching in Graphs 3 /30



Compatibility graph

Graph G = (V, E)) undirected, connected, without self-loop

@ Nodes V ={1,2,...,n} — item classes

e Edges £ = {1,2,...,m} — possible matches 1 g

e V; = {neighbors of node i} — V(U) = U;ciy Vi, U CV 3 4
o E; = {edges with endpoint i} 2 -

Céline Comte Stochastic Dynamic Matching in Graphs 3 /30



Compatibility graph

Graph G = (V, E)) undirected, connected, without self-loop

@ Nodes V ={1,2,...,n} — item classes
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e V; = {neighbors of node i} — V(U) = U;ciy Vi, U CV 3 4
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Compatibility graph

Graph G = (V, E)) undirected, connected, without self-loop

@ Nodes V' ={1,2,...,n} — item classes

e Edges £ = {1,2,...,m} — possible matches 1
e V; = {neighbors of node i} — V(U) = U;ciy Vi, U CV
o E; = {edges with endpoint i} 2
o I = {independent sets} = {{1}, {2}, {3}, {4},{1,4},{2,4}}
o Iy =TU {0}
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Random dynamics .

1
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Class-i items arrive as a Poisson process with rate p;

_>2\44/ 411 b —

The system dynamics depend on:
e the graph G = (V, E),

o the vector = (1, p2, .-+, fin),
@ the matching policy.
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Random dynamics

1
™~

Class-i items arrive as a Poisson process with rate p; A 3 4

2 |
— 2 \44/ 4 |1 - :,,J
The system dynamics depend on: Notation:
@ the graph G = (V, E), o Arrival rate u(U) = >, cyptin UCV

= — _u)

o the vector = (p1, p2, - - -, i), o Load p(I) = ;firhy, T €1

@ the matching policy.
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“Stabilizability” :
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o Studied in (Busi¢, Gupta, and Mairesse, 2013)
and (Mairesse and Moyal, 2016) 2 \

Céline Comte Stochastic Dynamic Matching in Graphs



“Stabilizability” :

1

N
3 4
L

o Studied in (Busi¢, Gupta, and Mairesse, 2013)
and (Mairesse and Moyal, 2016) 2 \

@ The matching problem (G, p) is stabilizable

Céline Comte Stochastic Dynamic Matching in Graphs



“Stabilizability” :

1

N
3 4
L

o Studied in (Busi¢, Gupta, and Mairesse, 2013)
and (Mairesse and Moyal, 2016)

@ The matching problem (G, p) is stabilizable
if and only if p(I) < 1 for each I € L.
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“Stabilizability” .
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3 4
e Studied in (Busi¢, Gupta, and Mairesse, 2013) e ‘
and (Mairesse and Moyal, 2016) 2 \
: : B
@ The matching problem (G, p) is stabilizable
if and only if p(I) < 1 for each I € L.
n3
1 2 3})) = ———
p1}) = M2+M3 Pz} = M1+M3 P8} M1+ p2 T+ e
M1+ pg M2+ g
4}) = — 1,4 2,4
pl{ay) = pl{ap = Bty < 2
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e Studied in (Busi¢, Gupta, and Mairesse, 2013) e ‘
and (Mairesse and Moyal, 2016) 2 \
: : B
@ The matching problem (G, p) is stabilizable
if and only if p(I) < 1 for each I € L.
n3
1 2 3})) = ———
p1}) = M2+M3 Pz} = M1+M3 P8} M1+ p2 T+ e
M1+ pg M2+ g
4}) = — 1,4 2,4
pl{ay) = pl{ap = Bty < 2

@ The compatibility graph G is stabilizable if and only if G is non-bipartite.
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Applications

Paired kidney donation
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© Performance under the first-come-first-matched policy
Comte, Stochastic Models (2022)
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First-come-first-matched policy
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First-come-first-matched policy
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@ Perceived as “fair’, greedy, easy to implement, easy to analyze.
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First-come-first-matched policy
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@ Perceived as “fair’, greedy, easy to implement, easy to analyze.
o (Moyal, Busi¢, and Mairesse, 2021) derives:

o the necessary and sufficient stability condition,
o the product-form stationary distribution of the “detailed” state.
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First-come-first-matched policy

U \44/‘ L - “
B

@ Perceived as “fair’, greedy, easy to implement, easy to analyze.
o (Moyal, Busi¢, and Mairesse, 2021) derives:

o the necessary and sufficient stability condition,
o the product-form stationary distribution of the “detailed” state.

What is the long-term performance under first-come-first-matched?
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Calculate long-term performance metrics

1

N
3 4
L

@ This is an order-independent loss queue!
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@ This is an order-independent loss queue!

@ Stationary distribution of the set of unmatched classes:

(1) "U)(Z a W\{i})), Iel

T 1) \ & D)
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The value of 7() follows by normalization.
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@ This is an order-independent loss queue!

@ Stationary distribution of the set of unmatched classes: |

m(I) = % (Z %W(I \ {i})) , Tel

iel

The value of 7() follows by normalization.

e Waiting probability of class i:  w; = Z m(I).
I€ly:i¢V (1)
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Calculate long-term performance metrics

1

@ This is an order-independent loss queue!

N
3 4
L

@ Stationary distribution of the set of unmatched classes: |

m(I) = % (Z %W(I \ {i})) , Tel

iel

The value of 7() follows by normalization.

e Waiting probability of class i:  w; = Z m(I).
I€ly:i¢V (1)
) oy 1
In particular, we obtain M = —.
Dicy Hi 2
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Calculate long-term performance metrics
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@ Mean number of unmatched items: ) - ‘\
L=>Y uI), J——
Iel
| _w) ) i |
with (1) = — 0 T T 0 (; M(I)e(f\{@})> :
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L=>Y uI), > B
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| _w) ) i |
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The mean waiting time of an item follows from Little's law.

@ More detailed formulas for the performance per class.
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Calculate long-term performance metrics -

1
™~
3 4
@ Mean number of unmatched items: ) - ‘\
L=>Y uI), D B
Iel
| _w) ) i |
with (1) = — 0 T T 0 <§E; M(I)e(f\{@})> :

The mean waiting time of an item follows from Little's law.
@ More detailed formulas for the performance per class.

@ Similar results for stochastic bipartite matching model (Comte & Dorsman, ASMTA, 2021).
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Calculate long-term performance metrics

1

N
3 4
L

e Matching rate along edge k = {i, j}: 2
mean number of matches per time unit
between classes ¢ and j. -

—)2\44/‘ : :
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Calculate long-term performance metrics

1

N
3 4
L

e Matching rate along edge k = {i, j}: 2 |
mean number of matches per time unit
between classes 7 and j. - —

—)2\44/‘ : :

@ Closed-form expression: consider a finer partition of the state space.
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Calculate long-term performance metrics -

1

™~
e 3 4
e Matching rate along edge k = {i, j}: 2 “
mean number of matches per time unit
between classes ¢ and j. - . —

@ Closed-form expression: consider a finer partition of the state space.

o Different approach in a few slides...
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Heavy-traffic regime

1

o Consider a maximal independent set I € .
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Heavy-traffic regime .

1

o Consider a maximal independent set I € .

™~
!

@ When the load p(I) = % tends to 1,

o the set of unmatched classes is I with probability 1,
o the classes in I wait with probability 1,
while other classes wait with probability 0,

o the mean number of unmatched items is ~ 2

1=p(I)"
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Heavy-traffic regime .

1
™~
3 4
- \
o Consider a maximal independent set I € . 2 \
When the | 1) =40 R
° en the load p( ):mtendstol,
o the set of unmatched classes is I with probability 1,
o the classes in I wait with probability 1, I
while other classes wait with probability 0,
o the mean number of unmatched items is ~ 15(1)1&)_ M/M/1 multi-class queue

M1 —
i TG ~
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Heavy-traffic regime

1
™~
3 4
! ‘
o Consider a maximal independent set I € . 2 \
@ When the load p(I) = ) tends to 1 . R
PR = vy !
o the set of unmatched classes is I with probability 1,
o the classes in I wait with probability 1, I
while other classes wait with probability 0,
o the mean number of unmatched items is ~ 1f(pl()1). M/M/1 multi-class queue
@ Take-away: minimizing the maximal load is a good Zi : —
heuristic to optimize performance.
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Numerical results: Cycle with a chord
3]
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© Matching rates under an arbitrary policy
Comte, Mathieu, and Busi¢, arXiv:2112.14457 (2022)
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Matching rates :
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e Matching rate \; along edge k = {4, j}: 5
mean number of matches per time unit
between classes i and j. - —
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Matching rates .

1
N
1

e Matching rate \; along edge k = {4, j}: 5
mean number of matches per time unit
between classes i and j. S

@ Matching rates are particularly interesting:
o We often want to optimize a function of these matching rates.
o They give intuition about the long-term impact of the matching policy.
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Matching rates

1
N
7

e Matching rate \; along edge k = {4, j}: 9 ‘
mean number of matches per time unit
between classes i and j. )

@ Matching rates are particularly interesting:
o We often want to optimize a function of these matching rates.
o They give intuition about the long-term impact of the matching policy.

Given a graph G = (V, E) and a vector i = (u1, po, . . ., pin,) of arrival rates,
what is the set of “feasible” vectors A = (A1, Ao, ..., \,,,) of matching rates?
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Conservation equation

The matching rates satisfy the conservation law

Z)\kzui, iE{l,Q,...,n}.

keFE;
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Conservation equation

1
™~
3 4

The matching rates satisfy the conservation law 5 L ‘
|
> Me=mi, i€{L,2,...,n} J—

Rk A2+ A =

A2+ A3 = 2

A3+ A3+ N34 =3

A34 = 4
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Conservation equation

1
™~
3 4

The matching rates satisfy the conservation law 5 L ‘
|
Z Ak:/’[/i7 Z.E {1,27---,”}7 L > — 777——'—j

kEE; A2+ A3 =

that is, in matrix form, A2+ A3 = 2

m A3+ A2 3+ A34 =3

= W, )\374 = w4

where A = (a; 1) is the incidence matrix
of the compatibility graph.
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Conservation equation

1
™~
3 4
The matching rates satisfy the conservation law 5 L ‘
|
> Me=mi, i€{,2,...,n}, ——
kEE >\12+>\13—M1
that is, in matrix form, A2+ A2z = 2
m A3+ A23+ Aga = 3
= W, )\374 = w4
where A = (a; 1) is the incidence matrix 1 1 0 0] [he 10
of the compatibility graph. 10 1 0f [As 12
0 1 1 1| [das|  |ps
0 0 0 1] [A34 I
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Example: Triangle graph
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M2+ A3 =
A2+ Aoz = 2
A3+ A3 = 3
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Example: Triangle graph

1 A2+ A3 =
PN el Rl Atz + A2z = pi2
12 2 A3+ A3 = 3
+ —
3 AL = M1 ,u23 K2
I 1 0f [Ai2 H1
+ i )
/ )\273 — W 1 0 1 )\1’3 = | U2
0 1 1] [A23 3
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Example: Triangle graph

1 A2+ A3 =
LA —
Q&\/@ Ao — Q1+ po — p3 A2 + A2z = 2
9 12 2 A3+ A3 = 3
| + _
e 3 — )\1,3 = W —
E M2 + 2 — fi LoLOp fAee H
M Ao 3 = B E— L 0 1) | A3 = [pe2
) 20 0 1 1] [X3 3
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Example: Paw graph

A2+ A3 =1
1 A2+ Aoz = p2
\ A1,3 + A2z + Azq = 3
A3,4 = [4

3 4
/ 1 1 0 0 )\172 1251
1 01 1 )\173 . 175)
2 01 10 )\273 - M3
000 1] [Nl |
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Example: Paw graph
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1 A2+ Aoz = p2
\ A1,3 + A2z + Azq = 3
A3,4 = [4

3 m 4
/ 110 0] 2] [m
10 1 1| | Ms| |
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Example: Paw graph

A2+ A3 =1
1 A2+ Aoz = p2
\ [z = [13 — 4 A1,3 + A2z + Azq = 3
A3,4 = [4

3 12 4
/ 1 1 0 0 )\172 1251
1 01 1 )\173 . 175)
2 01 10 )\273 - M3
000 1] [Nl |
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Example: Paw graph

A2+ A3 =1

1 % A2+ Aoz = p2

) \ s = pig — 4 A3+ A23 + Aza = p3

‘T: A3,4 = [4
‘EN 3 m 4

: / 110 0] 2] [m

M 101 1| [Ms| |

2 0 1 1 0 [Aas|  |us

00 0 1] |Asa m
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Example: Diamond graph

A2+ A3 =
A2+ A3+ Ao = o

1 4 A1,3 + A2z + Azq = 3

A24+ X34 = g
) 11000 i” 11
10110 A“” o
01101 )\2’3 s
000 1 1| m
A3,4
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Example: Diamond graph

B =32+ ps — 1 — pa)

A2+ A3 =
A2+ A3+ Ao = o

1 B 4 A3+ A2+ A4 =3

A24+ X34 = g
) 11000 i” 11
10110 A“” o
01101 )\2’3 s
000 1 1| m
A3,4
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Example: Diamond graph

B =32+ ps — 1 — pa)

fio = p2 — B S
p1+ pg = fig + fis = 3

A2+ A3 =
/ \ A2+ A3+ Aoy = o
1 B 4 A3+ A2+ A4 =3
\ / A24+A34 = 14

3 11000 iiz L

1011 0]]|™™ 2

fiz =p3 = f 01101 12’3 = s

000 1 1| m

A34
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Example: Diamond graph

B =32+ ps — 1 — pa)

fio = pi2 — 3 L
et p1+ pg = fig + fis = 3
o 2 2
WLX "‘2/54 A2+ A3=m
W @ A2+ A3+ Ao = o
1 B 4 A3+ A2+ A4 =3
> d A24+ X34 = g
/‘1,(23 2 “?)\MX R
S B 1100 o] [\ [m
i S S D
f3 = p3 — B 0110 1 )\2’3 s
000 1 1| m
A34
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Surjectivity, injectivity, and bijectivity

@ The compatibility graph G is surjective if
o The linear application A € R™ — AX € R" is surjective.
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Surjectivity, injectivity, and bijectivity

@ The compatibility graph G is surjective if
o The linear application A € R™ — AX € R" is surjective.

@ The compatibility graph G is injective if
o The linear application A € R™ — AX € R" is injective.

@ The compatibility graph G is bijective if G is surjective and injective.
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Surjectivity, injectivity, and bijectivity
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@ The compatibility graph G is surjective if

o The linear application A € R™ — AX € R" is surjective. :
o The conservation law AX = p has at least one solution, for each 1 € R”.

@ The compatibility graph G is injective if
o The linear application A € R™ — AX € R" is injective.
e The conservation law AX = p has at most one solution, for each © € R™.

@ The compatibility graph G is bijective if G is surjective and injective.
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Surjectivity, injectivity, and bijectivity
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@ The compatibility graph G is surjective if

o The linear application A € R™ — AX € R" is surjective. D
o The conservation law AX = p has at least one solution, for each 1 € R”.
o The compatibility graph G is non-bipartite (i.e., contains at least one odd cycle).

@ The compatibility graph G is injective if
o The linear application A € R™ — AX € R" is injective.
e The conservation law AX = p has at most one solution, for each © € R™.

@ The compatibility graph G is bijective if G is surjective and injective.
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Surjectivity, injectivity, and bijectivity
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@ The compatibility graph G is surjective if

o The linear application A € R™ — AX € R" is surjective. D
o The conservation law AX = p has at least one solution, for each 1 € R”.
o The compatibility graph G is non-bipartite (i.e., contains at least one odd cycle).

@ The compatibility graph G is injective if
o The linear application A € R™ — AX € R" is injective.
e The conservation law AX = p has at most one solution, for each © € R™.
o The compatibility graph G contains at most one cycle and this cycle is odd.

@ The compatibility graph G is bijective if G is surjective and injective.
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Surjectivity, injectivity, and bijectivity

2 2
: / \ - : / \ -
\ P / \ ] /
(a) Neither surjective, nor injective (b) Surjective-only
1 1

\ \
3 4 3 4
7 L

(c) Injective only (d) Bijective
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“Stabilizability”

Céline Comte

Stochastic Dynamic Matching in Graphs
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“Stabilizability” '

1
™~
3 4
/ |
° |
@ A matching problem (G, i) is stabilizable B
if and only if p(I) < 1 for each I € L.
1 1 0 0 )\1’2 1251
1 01 0 /\173 M2
01 11 /\2’3 - M3
0 0 0 1 [A34 m
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“Stabilizability” '
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? |
@ A matching problem (G, p) is stabilizable e
if and only if the conservation law A\ = ; has a solution >\ > 0
1 1 0 0 )\1’2 1251
1 01 0 /\173 M2
01 11 /\2’3 - M3
0 0 0 1 [A34 144
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“Stabilizability” :

1
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@ A matching problem (G, p) is stabilizable R
if and only if the conservation law A\ = ; has a solution >\ > 0
The time complexity to verify this condition is polynomial in n and m.

1 1 0 0 )\1’2 1251
1 01 0 /\173 M2
01 1 1 /\2’3 - M3
00 0 1] |34 114
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“Stabilizability” .

1
™~
3 4
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° |
@ A matching problem (G, p) is stabilizable R
if and only if the conservation law A\ = ; has a solution >\ > 0.
The time complexity to verify this condition is polynomial in n and m.
@ A compatibility graph G is stabilizable if and only if G is non-bipartite.
1 1 0 0 )\1’2 1251
1 010 /\173 . j25)
01 11 /\2’3 - M3
0 0 0 1 [A34 22}
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“Stabilizability” :

1
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! ‘
° |
@ A matching problem (G, p) is stabilizable R
if and only if the conservation law A\ = ; has a solution >\ > 0
The time complexity to verify this condition is polynomial in n and m.
@ A compatibility graph G is stabilizable if and only if GG is surjective.
11 0 0] [Mpe 11
1 01 0 /\173 M2
01 11 /\2’3 - M3
0 0 0 1 [A34 22}
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“Stabilizability” .

1
™~
3 4
! ‘
° |
@ A matching problem (G, p) is stabilizable R
if and only if the conservation law A\ = ; has a solution >\ > 0.
The time complexity to verify this condition is polynomial in n and m.
@ A compatibility graph G is stabilizable if and only if GG is surjective.
The ranlf of matrlx.A is . 110 0] [Mo "
The nullity of matrix Aisd=m —n 101 0 /\1’3 s
(according to the rank-nullity theorem). 01 1 1| |hos = s
0 0 0 1 [A34 22}
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Affine space of solutions :

1
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@ The solution set of the conservation law A\ = p is 2

A:{)\°+a1b1+a2bg+...+adbd:aeRd} = - -

where \° is a particular solution of the conservation law
and {b1,ba,...,bq} is a basis of Ker(A), of cardinality d = m — n.
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@ The solution set of the conservation law A\ = p is 2

A:{)\°+a1b1+a2bg+...+adbd:aeRd} - - -

where \° is a particular solution of the conservation law
and {b1,ba,...,bq} is a basis of Ker(A), of cardinality d = m — n.

@ We borrowed an algorithm from (Doob, 1973) to build a basis of Ker(A).
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Affine space of solutions
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@ The solution set of the conservation law A\ = p is 2

A:{)\°+a1b1+a2b2+...+adbd:aeRd} - - -
where \° is a particular solution of the conservation law
and {b1,ba,...,bq} is a basis of Ker(A), of cardinality d = m — n.
@ We borrowed an algorithm from (Doob, 1973) to build a basis of Ker(A).

@ We use two coordinate systems:
o Edge coordinates A = (A1, A, ..., \y) € R™.
o Kernel coordinates a = (ay, as, ..., aq) € RY
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Example: Diamond graph

B =32+ ps — 1 — pa)

fio = pi2 — 3 L
et p1+ pg = fig + fis = 3
o 2 2
WLX "‘2/54 A2+ A3=m
W @ A2+ A3+ Ao = o
1 B 4 A3+ A2+ A4 =3
> d A24+ X34 = g
/‘1,(23 2 “?)\MX R
S P 1100 o] [\ [m
i S S D
f3 = p3 — B 0110 1 )\2’3 s
000 1 1| m
A34

Céline Comte Stochastic Dynamic Matching in Graphs 25 / 30



Polytope of non-negative solutions :
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@ The set of non-negative solutions of the conservation law is 2 |

AZ():AQ]RT . o -
%{aGRd:)\O—i—albl—i—agbg—i—...—i—adbdZO}.

This is a d-dimensional convex polytope.
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@ The set of non-negative solutions of the conservation law is 2 |

AZ():AQ]RT . o -
%{aGRd:)\O—i—albl—i—agbg—i—...—i—adbdZO}.

This is a d-dimensional convex polytope.

@ The subgraph restricted to the support of a vertex of A> is injective
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Polytope of non-negative solutions

@ The set of non-negative solutions of the conservation law is 2 |

AZ():AQ]RT
%{aGRd:)\O—i—albl—i—agbg—i—...—i—adbdZO}.

This is a d-dimensional convex polytope.

@ The subgraph restricted to the support of a vertex of A> is injective:
o If the subgraph is bijective, the vertex is achieved by any stable policy applied to the subgraph.
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Polytope of non-negative solutions

@ The set of non-negative solutions of the conservation law is 2 |

AZ():AQ]RT
%{aGRd:)\O—i—albl—i—agbg—i—...—i—adbdZO}.

This is a d-dimensional convex polytope.

@ The subgraph restricted to the support of a vertex of A> is injective:
o If the subgraph is bijective, the vertex is achieved by any stable policy applied to the subgraph.
o If the subgraph is injective but not surjective, it's more complicated...
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Example: Codomino graph

(a) Solution of the conservation law A\ = p. (b) Polytope A>g in kernel coordinates.
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Example: Codomino graph

21205 B
[6] [510

(a) Vertex (0,1). (b) Vertex (—1,0). (c) Vertex (1,0).

(d) Vertex (—1,—1). (e) Vertex (1, —-1).
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Take-away L |
@ Stochastic dynamic matching problem associated with 2 \
organ transplant programs and assembly systems. o e

@ Performance evaluation under the first-come-first-matched policy.

@ Analysis of the matching rates under an arbitrary matching policy.
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1
™~
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Take-away ] |
@ Stochastic dynamic matching problem associated with 2 \
organ transplant programs and assembly systems. I I

@ Performance evaluation under the first-come-first-matched policy.

@ Analysis of the matching rates under an arbitrary matching policy.

Future works
@ More realistic model: hypergraph? state-dependent arrival rates?

@ Optimization and learning: graph structure? arrival rates? policy?
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Basis of the kernel of the matrix A
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Basis of the kernel of the matrix A

2

@ A vector A € R™ belongs to Ker(A) if and only if A\ = 0.
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A4+ A34=0

11 0 0 ilvz 0

10 0 1 o0f|" Jo

01 N

00 11| 7?4 0
A3.4

Céline Comte Stochastic Dynamic Matching in Graphs 30/ 30
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Basis of the kernel of the matrix A
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@ A vector A € R™ belongs to Ker(A) if and only if A\ = 0. : N e 4
\
@ Algorithm to construct a basis of Ker(A) (Doob, 1973) 3 |
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Basis of the kernel of the matrix A

2
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@ A vector A € R™ belongs to Ker(A) if and only if A\ = 0. : N e 4
\
@ Algorithm to construct a basis of Ker(A) (Doob, 1973) 3 |
@ Build a spanning tree T of G. L —
)\172 + )\1,3 =0

M2+ A3+ A4 =0
A3+ A3+ A34=0
A4+ A34=0

S O = =
O = O
o O O O
— O = O
= =0 O

<

o
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Basis of the kernel of the matrix A

2
L~

NS
3 - |
@ Algorithm to construct a basis of Ker(A) (Doob, 1973) \
@ Build a spanning tree T of G. . B —
@ Identify an edge k ¢ T such that M2+ A3=0
T U {k} contains an odd cycle. Ao+ Aoz +Agyg=0

A3+ A3+ A34=0

@ A vector A € R™ belongs to Ker(A) if and only if A\ = 0.

A4+ A34=0
11000 ilvz 0
10010 ;3 o
01001 ;73 ~ o
000 1 1|24 0

A3.4
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Basis of the kernel of the matrix A

2
1// N
@ A vector A € R™ belongs to Ker(A) if and only if A\ = 0. 4
\
@ Algorithm to construct a basis of Ker(A) (Doob, 1973) 3 |
@ Build a spanning tree T of G. . B —
@ Identify an edge k ¢ T such that M2+ A3=0

T U {k} contains an odd cycle. I\ A Mot =0
© For each edge | ¢ (T U {k}), build a L2 T A28+ A2d
kernel vector with support {1} €S C T U {k,1} A3+ A3+ A34=0

A4+ A34=0

S O = =
O = O
o O O O
— O = O
= =0 O
o O O O
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Basis of the kernel of the matrix A

2
! P maN
@ A vector A € R™ belongs to Ker(A) if and only if A\ = 0. 4
|
@ Algorithm to construct a basis of Ker(A) (Doob, 1973) 3 |
@ Build a spanning tree T of G. . B —
@ Identify an edge k ¢ T such that M2+ A3=0

T U {k} contains an odd cycle. I\ A Mot =0
© For each edge | ¢ (T U {k}), build a L2 T A28+ A2d
kernel vector with support {1} €S C T U {k,1} A3+ A3+ A34=0

o A24+A34=0
@ The matching rate along an edge is unique

if and only if this edge doesn't belong 110 0 0 A1 0
to any “generalized even cycle”. 100 1 0 AL 0
01001 i“ ~ o
000 1 1] > 0

A3.4
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