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Random Environment

Trip travel times in real traffic networks suffer from:
˝ Time-dependence: daily patterns, seasonality
˝ Stochasticity: random effects that lead to delays
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Outline

1. Markovian velocity model

2. Find the optimal route

3. Determine the optimal departure time

4. Related and other work
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Markovian Velocity Model

Consider the graph G “ pN,Aq with
˝ N the set of nodes (ramps/intersections)
˝ A the set of arcs (roads between ramps/intersections)

May, 2023 6 / 71



Markovian Velocity Model
Consider the graph G “ pN,Aq with
˝ N the set of nodes (ramps/intersections)
˝ A the set of arcs (roads between ramps/intersections)

May, 2023 6 / 71



Markovian Velocity Model
Consider the graph G “ pN,Aq with
˝ N the set of nodes (ramps/intersections)
˝ A the set of arcs (roads between ramps/intersections)

May, 2023 6 / 71



Markovian Velocity Model
Consider the graph G “ pN,Aq with
˝ N the set of nodes (ramps/intersections)
˝ A the set of arcs (roads between ramps/intersections)

k `

May, 2023 7 / 71



Markovian Velocity Model
Consider the graph G “ pN,Aq with
˝ N the set of nodes (ramps/intersections)
˝ A the set of arcs (roads between ramps/intersections)

k `

May, 2023 7 / 71



Markovian Velocity Model
Consider the graph G “ pN,Aq with
˝ N the set of nodes (ramps/intersections);
˝ A the set of arcs (roads between ramps/intersections)

k `
100 km/h

May, 2023 8 / 71



Markovian Velocity Model
Consider the graph G “ pN,Aq with
˝ N the set of nodes (ramps/intersections);
˝ A the set of arcs (roads between ramps/intersections)

k `
100 km/h 70 km/h

May, 2023 9 / 71



Markovian Velocity Model
Consider the graph G “ pN,Aq with
˝ N the set of nodes (ramps/intersections);
˝ A the set of arcs (roads between ramps/intersections)

k `
100 km/h 70 km/h 100 km/h

Speeds between ramps vary between finitely many values. We deal with
these changing speeds by working with a Markovian background process.
This way we can incorporate both time-dependence and random effects.
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Markov modulation: random effects

k0 k‹

Markov process with incidents:

Xk0k‹ptq “

#

0 if no incident on road k0k
‹ at time t

1 oth.

The speed on link k0k
‹ can be defined dependent on Xk0k‹ptq ,

e.g.
vk0k‹p0q “ 100
vk0k‹p1q “ 30.
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Markov modulation: random effects

k0 k1 k‹

MP with incidents: Bptq “ pXk0k1ptq,Xk1k‹ptqq,

Xi ptq “

#

0 if no incident on road i at time t

1 oth.

The speed on k0k1 and k1k
‹ can be defined dependent on Bptq

,

e.g.
vk0k1pp0, 0qq “ 100
vk0k1pp1, 0qq “ 30
vk0k1pp0, 1qq “ 70
vk0k1pp1, 1qq “ 20
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Markov modulation: random effects

k0 k1 k‹

MP with incidents: Bptq “ pXk0k1ptq,Xk1k‹ptqq,

Xi ptq “

$

’

&

’

%

0 if free-flow speed on road i at time t

1 if incident on road i at time t

2 if recovery state on road i at time t
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Markov modulation
We can extend our framework by adding more edges.
Notation: k1`1, k2`2, . . . , kn`n.

Markovian background process:
Bptq “

`

Xk1`1ptq, . . . ,Xkn`nptq
˘

Note:
˝ Xki`i ptq may be any Markov Process
˝ Xki`i ptq,Xkj`j ptq evolve independently;
˝ Dependence introduced by vki`i pBptqq;
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Markov modulation: deterministic patterns

Transition times in our Markov model are exponential:

ErExppλqs “
1
λ

VarrExppλqs “
1
λ2

What if we have events which are much more deterministic?

To include this in our framework, model these events by sums of
exponentials (‘Erlang phases’). Realize:

Er
n
ÿ

m“1

Expmpλnqs “
1
λ

Varr
n
ÿ

m“1

Expmpλnqs “
1
λ2n

.
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Markov modulation: deterministic patterns

k0 k1 k‹

MP with incidents and weather: Bptq “ pXk0k1ptq,Xk1k‹ptq,Y ptqq

0Xi ptq : 1 0Y ptq : 1 2 3
3λ 3λ 3λ
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Markov modulation
We can extend our framework by adding more edges.
Notation: k1`1, k2`2, . . . , kn`n.

Markovian background process:
Bptq “

`

Xk1`1ptq, . . . ,Xkn`nptq, Y ptq
˘

Note:
˝ Xki`i ptq may be any Markov Process
˝ Given Y ptq, Xki`i ptq,Xkj`j ptq evolve independently;
˝ Dependence introduced by vki`i pBptqq;
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Markovian Velocity Model

˝ Can handle stochasticity
˝ Can handle time-dependence
˝ Can handle correlation
˝ Extreme flexibility (phase-type counterparts)
˝ Tractability (LST of travel times)
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Outline

1. Markovian velocity model

2. Find the optimal route

3. Determine the optimal departure time

4. Related and other work
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Outline

1. Markovian velocity model

2. Find the optimal route: minimize expected travel time

3. Determine the optimal departure time

4. Related and other work

May, 2023 22 / 71



Dynamic routing
Dynamic routing: vehicle is allowed to adapt route
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Dynamic routing

Question: does a minimizing policy exist?

Answer: Yes

V pk, s0q “ Es0rτk`s `
ÿ

s

PpBpτk`q “ sqV p`, sq

ùñ Bellman equation
ùñ Minimizing policy satisfies Bellman optimality equations
ùñ DP or linear programming

Note: not efficient!
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Dynamic Routing

k0

k‹

Figure: 2 ˆ 2-network

k0

k‹

Figure: 3 ˆ 3-network
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Dynamic Routing

2 3 4 5 6
n

0.1

100

sec
Computational costs

Optimal

EDSGER*
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EDSGER‹

Algorithm for Expected Delay on a Stochastic Graph with Efficient
Routing, also known as

EDSGER‹.

Figure: Edsger W. Dijkstra
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EDSGER‹
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EDSGER‹
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EDSGER‹
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EDSGER‹
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EDSGER‹
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EDSGER‹
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EDSGER‹
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EDSGER‹
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EDSGER‹

Shortest path algorithm within EDSGER‹: Dijkstra-like
Assigns labels and iteratively updates the labels of these nodes:
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EDSGER‹
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EDSGER‹

2

d2 “ Es0rτ12s
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EDSGER‹

2

d2 “ Es0rτ12s

1
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d3 “ Es0rτ13s
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d5 “ d3 `
ÿ

s1

ps0s1Es1rτ35s
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EDSGER‹

d5 “ d3 `
ÿ

s1

ps0s1Es1rτ35s

Note:

˝ Computation of expectation and transition probabilities involves a
term eQ

˝ If |A| “ n and every arc has two states, Q has dimension 2n, which
grows exponentially

Workaround:
˝ local-correlation
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Local-correlation
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EDSGER‹

d5 “ d3 `
ÿ

s1

ps0s1Es1rτ35s

Note:
˝ Computation of expectation and transition probabilities involves a

term eQ

˝ If |A| “ n and every arc has two states, Q has dimension 2n, which
grows exponentially

Workaround:
˝ local-correlation: dimpQ localq ! dimpQq
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Dynamic Routing

2 3 4 5 6
n

0.1

100

sec
Computational costs

Optimal

EDSGER*
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Outline

1. Markovian velocity model

2. Find the optimal route

3. Determine the optimal departure time

4. Related and other work
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Random Environment
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Random Environment

Travelers do not want to:

˝ Arrive too late at the destination
˝ Depart too early from their origin

Optimal departure time:
Latest time of departure for which a chosen on-time arrival probability
can be guaranteed.
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Challenges

Trip travel times in real traffic networks suffer from:
˝ Time-dependence: daily patterns, seasonality
˝ Stochasticity: random effects that lead to delays
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Markovian Velocity Model

ai

Markov process with incidents:

Xai ptq “

#

0 if no incident on link ai at time t

1 oth.

Assumption: for i ‰ j , processes Xai ptq,Xaj ptq evolve independently.
Then, process Xai ptq is described by its initial state, and Q-matrix:

Qai “

„

´αi αi

βi ´βi



αi , βi P Rą0.
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Markovian Velocity Model

ai

Markov process with incidents:

Xai ptq “

#

0 if no incident on link ai at time t

1 oth.

Impact on travel time modeled via vehicle speeds:
Speed at time t equals

• vai p0q if Xai ptq “ 0
• vai p1q if Xai ptq “ 1.
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Markovian Velocity Model

With

Bptq :“ pXa1ptq, . . . ,Xanptqq,

Bptq is a Markovian background process that tracks the occurrence of
incidents, and their affect on arc speeds.
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Optimal Departure Time Advice

To determine the optimal departure time, we need:
• The desired arrival time M

• The desired on-time arrival probability η
• The current state of the network Bp0q
• A path P to travel

We define the optimal departure time as

t˚0 :“ suptt ě 0 | P
`

t ` Tt ď M | Bp0q
˘

ě ηu,

where Tt is the travel time when departing at time t.
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Travel Time Distribution

a

1. Immediate departure, one link (P “ tau, T0):

˝ Travel time distribution described by Qai and Xap0q
˝ LST known, inversion unsuccessful
˝ PMF via discretization approach:

May, 2023 53 / 71



Travel Time Distribution

a

1. Immediate departure, one link (P “ tau, T0):

˝ Travel time distribution described by Qai and Xap0q
˝ LST known, inversion unsuccessful
˝ PMF via discretization approach:

May, 2023 53 / 71



Travel Time Distribution

a

1. Immediate departure, one link (P “ tau, T0):
˝ Travel time distribution described by Qai and Xap0q

˝ LST known, inversion unsuccessful
˝ PMF via discretization approach:

May, 2023 53 / 71



Travel Time Distribution

a

1. Immediate departure, one link (P “ tau, T0):
˝ Travel time distribution described by Qai and Xap0q
˝ LST known, inversion unsuccessful

˝ PMF via discretization approach:

May, 2023 53 / 71



Travel Time Distribution

a

1. Immediate departure, one link (P “ tau, T0):
˝ Travel time distribution described by Qai and Xap0q
˝ LST known, inversion unsuccessful
˝ PMF via discretization approach:

May, 2023 53 / 71



Discretization

0 1

α

β

0 1e´αδ e´βδ

1´e´αδ

1´e´βδ
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Travel Time Distribution

a

1. Immediate departure, one link (P “ tau, T0):
˝ Travel time distribution described by Qai and Xap0q
˝ LST known, inversion unsuccessful
˝ PMF via discretization approach:

$

’

’

&

’

’

%

t1 w.p. p1

t2 w.p. p2
...
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Travel Time Distribution

1. Immediate departure, one link (P “ tau, T0):
• Given Xap0q, approximating PMF can be computed.

2. Immediate departure, path (P “ ta1, . . . , amu, T0):
• Given Bp0q, path distribution via convolution.

3. Departure at time t, path (P “ ta1, . . . , amu, Tt):

• State Bptq at departure time t unknown
• Let P 1 “ ta0,Pu, with a0 a fictional link with PMF set as t w.p. 1.
• Traveling P at time t equals traveling P 1 at time 0.
• Given Bp0q, path distribution via convolution.
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Determining the Optimal Departure Time

For each t ě 0, we are now able to compute

P
`

t ` Tt ď M |Bp0q
˘

, t ě 0.

The MVM has the FIFO property: for t 1 ď t̃ we have

t 1 ` T 1t1 ď t̃ ` Tt̃ .

˝ Probability monotone decreasing in the departure time
˝ Bisection algorithm outputs optimal departure time
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Optimal Departure Time Advice

So far, we have assumed that the path to the destination is known
beforehand.

For an origin-destination pair:

˝ Optimal: bisection on output label-correcting algorithm
˝ Efficient alternative: k-shortest paths (parallel)
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Numerical Experiments
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Online Optimal Departure time

˝ When waiting for departure, new information on the state of the
Bp¨q becomes available

˝ Ideally, the optimal departure time is updated such that it
incorporates the latest state of the network

Therefore, we also consider an online version of the problem:

t˚u :“ suptt ě u | P
`

t ` Tt ď M | Bpuq
˘

ě ηu

May, 2023 60 / 71



Online Optimal Departure time

˝ When waiting for departure, new information on the state of the
Bp¨q becomes available

˝ Ideally, the optimal departure time is updated such that it
incorporates the latest state of the network

Therefore, we also consider an online version of the problem:

t˚u :“ suptt ě u | P
`

t ` Tt ď M | Bpuq
˘

ě ηu

May, 2023 60 / 71



Online Optimal Departure time

˝ When waiting for departure, new information on the state of the
Bp¨q becomes available

˝ Ideally, the optimal departure time is updated such that it
incorporates the latest state of the network

Therefore, we also consider an online version of the problem:

t˚u :“ suptt ě u | P
`

t ` Tt ď M | Bpuq
˘

ě ηu

May, 2023 60 / 71



Online Optimal Departure time

˝ When waiting for departure, new information on the state of the
Bp¨q becomes available

˝ Ideally, the optimal departure time is updated such that it
incorporates the latest state of the network

Therefore, we also consider an online version of the problem:

t˚u :“ suptt ě u | P
`

t ` Tt ď M | Bpuq
˘

ě ηu

May, 2023 60 / 71



Online Optimal Departure time

˝ When waiting for departure, new information on the state of the
Bp¨q becomes available

˝ Ideally, the optimal departure time is updated such that it
incorporates the latest state of the network

Therefore, we also consider an online version of the problem:

t˚u :“ suptt ě u | P
`

t ` Tt ď M | Bpuq
˘

ě ηu

May, 2023 60 / 71



Online vs Offline Optimal Departure time
For a range of on-time arrival probabilities η, we look at the difference in
minutes for the online and offline departure time:

Time until arrival: 1 hour
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Outline

1. Markovian velocity model

2. Find the optimal route

3. Determine the optimal departure time

4. Related and other work
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N. Levering, M. Boon, M. Mandjes, and R. Núñez-Queija
A framework for efficient dynamic routing under stochastically
varying conditions
Transportation Research Part B: Methodological (2022), 160,
97-124.

R. Kamphuis, N. Levering, and M. Mandjes
Optimal departure-time advice in road networks with stochastic
disruptions
Under review (Pre-print, arXiv:2208.14516 [math.OC]).
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MVM: Operationalization

N. Levering, M. Boon, and M. Mandjes
Estimating probability distributions of travel times by fitting a
Markovian velocity model
IEEE Transactions on Intelligent Transportation Systems (in press).

Idea:

˝ When using the MVM, it is assumed that Q and vapBptqq are known
˝ How can these be found for a given highway network?
˝ Present methodology, with lists of incidents and a data base of

recorded speeds as input
˝ Proof of concept in Dutch highway network
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Road traffic streams

N. Levering and R. Núñez-Queija
Input rate control in stochastic road traffic networks: Effective
bandwidths
Under review.

R. Kamphuis, N. Levering, and M. Mandjes
Optimal routing advice in highway networks with stochastic
fundamental diagram dynamics
Working paper.
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Queueing Theory

Time

Workload

v1`v2`v3`v4

v1

v1`v2

v1`v2`v3
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Queueing Theory

Time

Workload

v ` x

v1`v2`v3`v4

v1

v1`v2

v1`v2`v3
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Queueing Theory

R. Jacobovic, N. Levering, and O. Boxma
Externalities in the M/G/1 queue: LCFS-PR versus FCFS
Queueing Systems (in press).
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Road Traffic Externalities in queues

?
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Thank you for the attention!
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