Tailoring Policy Gradient to Product-Form Queueing Systems

Céline Comte and Matthieu Jonckheere
LAAS-CNRS and CNRS

Jaron Sanders and Albert Senen-Cerda Eindhoven University of Technology

Work in Progress

SOLACE Seminar – June 8, 2023

• A agent learns an optimal policy by interacting with an environment that sends rewards

- A agent learns an optimal policy by interacting with an environment that sends rewards
- Markov decision process with a sequence $S_0, A_0, R_1, S_1, A_1, R_2, S_2, A_2, R_3, \dots$

Source: Wikipedia (modified)

- A agent learns an optimal policy by interacting with an environment that sends rewards
- Markov decision process with a sequence $S_0, A_0, R_1, S_1, A_1, R_2, S_2, A_2, R_3, \dots$
- Environment $P(s',r|s,a) = \mathbb{P}\left[S_{t+1}=s' \mid S_t=s \atop R_{t+1}=r \mid A_t=a \right]$

Source: Wikipedia (modified)

- A agent learns an optimal policy by interacting with an environment that sends rewards
- Markov decision process with a sequence $S_0, A_0, R_1, S_1, A_1, R_2, S_2, A_2, R_3, \dots$
- Environment $P(s',r|s,a) = \mathbb{P} \left[egin{array}{l} S_{t+1}=s' \\ R_{t+1}=r \end{array} \middle| egin{array}{l} S_{t}=s \\ A_{t}=a \end{array} \right]$
- Policy $\pi(a|s,\theta) = \mathbb{P}[A_t = a \,|\, S_t = s]$

Source: Wikipedia (modified)

- A agent learns an optimal policy by interacting with an environment that sends rewards
- Markov decision process with a sequence $S_0, A_0, R_1, S_1, A_1, R_2, S_2, A_2, R_3, \dots$
- Environment $P(s',r|s,a) = \mathbb{P}\left[S_{t+1}=s' \mid S_t=s \atop R_{t+1}=r \mid A_t=a \right]$
- Policy $\pi(a|s,\theta) = \mathbb{P}[A_t = a \,|\, S_t = s]$
- ullet Goal: Find heta that maximizes the average reward rate

$$J(\theta) = \lim_{T \to +\infty} \frac{1}{T} \sum_{t=1}^{T} \mathbb{E}[R_t]$$

Source: Wikipedia (modified)

- A agent learns an optimal policy by interacting with an environment that sends rewards
- Markov decision process with a sequence $S_0, A_0, R_1, S_1, A_1, R_2, S_2, A_2, R_3, \dots$
- Environment $P(s',r|s,a) = \mathbb{P}\left[S_{t+1}=s' \mid S_t=s \atop R_{t+1}=r \mid A_t=a \right]$
- Policy $\pi(a|s,\theta) = \mathbb{P}[A_t = a \mid S_t = s]$
- ullet Goal: Find heta that maximizes the average reward rate

$$J(\theta) = \lim_{T \to +\infty} \frac{1}{T} \sum_{t=1}^{T} \mathbb{E}[R_t] = \mathbb{E}[R]$$

• $S \sim p(\cdot|\theta)$ stationary distribution of $(S_t, t = 0, 1, 2, ...)$ $(S, A, R) \sim$ stationary distribution of $((S_t, A_t, R_{t+1}), t = 0, 1, 2, ...)$

Source: Wikipedia (modified)

- Arrival rate $\lambda > 0$, service rate $\mu > \lambda$
- State: queue length $s \in \{0, 1, 2, \ldots\}$
- Actions: accept or reject
- ullet Reward lpha per accepted job
- ullet Holding cost η per job per time unit

- Arrival rate $\lambda > 0$, service rate $\mu > \lambda$
- State: queue length $s \in \{0, 1, 2, \ldots\}$
- Actions: accept or reject
- ullet Reward lpha per accepted job
- Holding cost η per job per time unit

- Arrival rate $\lambda > 0$, service rate $\mu > \lambda$
- State: queue length $s \in \{0, 1, 2, \ldots\}$
- Actions: accept or reject
- ullet Reward lpha per accepted job
- Holding cost η per job per time unit

$$\bullet \text{ Average reward rate } J(\theta) = \alpha \times \underbrace{\left(\sum_{s=0}^{+\infty} p(s|\theta) \pi(\operatorname{accept}|s,\theta)\right)}_{} - \eta \times \left(\sum_{s=0}^{+\infty} p(s|\theta) s\right) \times \frac{1}{\lambda}$$

Probabily of accepting a job

- Arrival rate $\lambda > 0$, service rate $\mu > \lambda$
- State: queue length $s \in \{0, 1, 2, \ldots\}$
- Actions: accept or reject
- ullet Reward lpha per accepted job
- Holding cost η per job per time unit

- Arrival rate $\lambda > 0$, service rate $\mu > \lambda$
- State: queue length $s \in \{0, 1, 2, \ldots\}$
- Actions: accept or reject
- ullet Reward lpha per accepted job
- Holding cost η per job per time unit

• Policy
$$\pi(\operatorname{accept}|s,\theta) = \frac{1}{1+e^{-\theta_s}}$$

- Arrival rate $\lambda > 0$, service rate $\mu > \lambda$
- State: queue length $s \in \{0, 1, 2, \ldots\}$
- Actions: accept or reject
- ullet Reward lpha per accepted job
- Holding cost η per job per time unit

$$\bullet \text{ Average reward rate } J(\theta) = \alpha \times \left(\sum_{s=0}^{+\infty} p(s|\theta) \pi(\operatorname{accept}|s,\theta) \right) - \eta \times \left(\sum_{s=0}^{+\infty} p(s|\theta) s \right) \times \frac{1}{\lambda}$$

$$\bullet \ \operatorname{Policy} \ \pi(\operatorname{accept}|s,\theta) = \frac{1}{1+e^{-\theta_{\min(s,k)}}} \ \text{with parameter vector} \ \theta = (\theta_0,\theta_1,\dots,\theta_k)$$

- Arrival rate $\lambda > 0$, service rate $\mu > \lambda$
- State: queue length $s \in \{0, 1, 2, \ldots\}$
- Actions: accept or reject
- ullet Reward lpha per accepted job
- Holding cost η per job per time unit

$$\bullet \text{ Average reward rate } J(\theta) = \alpha \times \left(\sum_{s=0}^{+\infty} p(s|\theta) \pi(\operatorname{accept}|s,\theta) \right) - \eta \times \left(\sum_{s=0}^{+\infty} p(s|\theta) s \right) \times \frac{1}{\lambda}$$

- Policy $\pi(\operatorname{accept}|s,\theta) = \frac{1}{1 + e^{-\theta_{\min(s,k)}}}$ with parameter vector $\theta = (\theta_0,\theta_1,\ldots,\theta_k)$
- $\bullet \ \, \text{Stationary distribution} \ \, p(s|\theta) \propto \prod_{i=0}^{k-1} \biggl(\frac{\lambda}{\mu} \pi(\text{accept}|i,\theta) \biggr)^{1_{\{s \geq i\}}} \biggl(\frac{\lambda}{\mu} \pi(\text{accept}|k,\theta) \biggr)^{\min(s,k)}$

- Arrival rate $\lambda > 0$, service rate $\mu > \lambda$
- State: queue length $s \in \{0, 1, 2, \ldots\}$
- Actions: accept or reject
- ullet Reward lpha per accepted job
- Holding cost η per job per time unit

$$\bullet \text{ Average reward rate } J(\theta) = \alpha \times \left(\sum_{s=0}^{+\infty} p(s|\theta) \pi(\operatorname{accept}|s,\theta) \right) - \eta \times \left(\sum_{s=0}^{+\infty} p(s|\theta) s \right) \times \frac{1}{\lambda}$$

- Policy $\pi(\operatorname{accept}|s,\theta) = \frac{1}{1 + e^{-\theta_{\min(s,k)}}}$ with parameter vector $\theta = (\theta_0,\theta_1,\ldots,\theta_k)$
- Stationary distribution $p(s|\theta) \propto \prod_{i=0}^{k-1} \left(\frac{\lambda}{\mu} \pi(\operatorname{accept}|i,\theta)\right)^{1_{\{s \geq i\}}} \left(\frac{\lambda}{\mu} \pi(\operatorname{accept}|k,\theta)\right)^{\min(s,k)}$

- Arrival rate $\lambda > 0$, service rate $\mu > \lambda$
- State: queue length $s \in \{0, 1, 2, \ldots\}$
- Actions: accept or reject
- ullet Reward lpha per accepted job
- Holding cost η per job per time unit

$$\bullet \text{ Average reward rate } J(\theta) = \alpha \times \left(\sum_{s=0}^{+\infty} p(s|\theta) \pi(\operatorname{accept}|s,\theta) \right) - \eta \times \left(\sum_{s=0}^{+\infty} p(s|\theta) s \right) \times \frac{1}{\lambda}$$

 $\bullet \ \, \text{Policy} \ \, \pi(\operatorname{accept}|s,\theta) = \frac{1}{1+e^{-\theta_{\min(s,k)}}} \ \, \text{with parameter vector} \, \, \theta = (\theta_0,\theta_1,\ldots,\theta_k)$

• Stationary distribution $p(s|\theta) \propto \prod_{i=0}^{k-1} \left(\frac{\lambda}{\mu} \pi(\operatorname{accept}|i,\theta)\right)^{\frac{1}{1\{s \geq i\}}} \left(\frac{\lambda}{\mu} \pi(\operatorname{accept}|k,\theta)\right)^{\frac{1}{1\{s \geq i\}}} \left(\frac{\lambda}{\mu} \pi(\operatorname{acc$

- ullet Jobs arrive as a Poisson process with rate λ
- M/M/1 queues with service rates μ_1 , μ_2 , ..., μ_n
- ullet Upper-bound ℓ on the number of jobs in the system
- State: vector $s = (s_1, s_2, \dots, s_n)$ of queue sizes
- Actions: assign to some server i
- Holding cost η per job per time unit

- ullet Jobs arrive as a Poisson process with rate λ
- M/M/1 queues with service rates μ_1 , μ_2 , ..., μ_n
- ullet Upper-bound ℓ on the number of jobs in the system
- State: vector $s = (s_1, s_2, \dots, s_n)$ of queue sizes
- Actions: assign to some server i
- ullet Holding cost η per job per time unit

• Policy
$$\pi(\text{server }i|\cdot,\theta) = \frac{e^{\theta_i}}{\sum_{j=1}^n e^{\theta_j}}$$

- ullet Jobs arrive as a Poisson process with rate λ
- M/M/1 queues with service rates μ_1 , μ_2 , ..., μ_n
- ullet Upper-bound ℓ on the number of jobs in the system
- State: vector $s = (s_1, s_2, \dots, s_n)$ of queue sizes
- Actions: assign to some server i
- ullet Holding cost η per job per time unit
- Policy $\pi(\text{server }i|\cdot,\theta) = \frac{e^{\theta_i}}{\sum_{j=1}^n e^{\theta_j}}$
- $\bullet \ \ \text{Stationary distribution} \ \ p(s|\theta) \propto \prod_{i=1}^n \biggl(\frac{\lambda}{\mu} \pi(\text{server } i|\cdot,\theta) \biggr)^{s_i}$

- ullet Jobs arrive as a Poisson process with rate λ
- M/M/1 queues with service rates μ_1 , μ_2 , ..., μ_n
- ullet Upper-bound ℓ on the number of jobs in the system
- State: vector $s = (s_1, s_2, \dots, s_n)$ of queue sizes
- Actions: assign to some server i
- ullet Holding cost η per job per time unit
- Policy $\pi(\text{server }i|\cdot,\theta) = \frac{e^{\theta_i}}{\sum_{j=1}^n e^{\theta_j}}$
- ullet Stationary distribution $p(s| heta) \propto \prod_{i=1}^n \left(\frac{\lambda}{\mu} \pi(\text{server } i|\cdot, heta) \right)^s$

- Jobs arrive as a Poisson process with rate λ
- M/M/1 queues with service rates $\mu_1, \mu_2, ..., \mu_n$
- ullet Upper-bound ℓ on the number of jobs in the system
- State: vector $s = (s_1, s_2, \dots, s_n)$ of queue sizes
- Actions: assign to some server i
- Holding cost η per job per time unit
- Policy $\pi(\text{server }i|\cdot,\theta) = \frac{e^{\theta_i}}{\sum_{j=1}^n e^{\theta_j}}$

• Stationary distribution $p(s|\theta) \propto \prod_{i=1}^n \left(\frac{\lambda}{\mu} \pi(\text{server } i|\cdot, \theta)\right)^{s_i}$

Depends on θ

• We consider MDPs and policy families $\pi(a|s,\theta)$ such that the Markov chain $(S_t,t=0,1,2,\ldots)$ has a **product-form stationary distribution** $p(s|\theta)$

- We consider MDPs and policy families $\pi(a|s,\theta)$ such that the Markov chain $(S_t,t=0,1,2,\ldots)$ has a **product-form stationary distribution** $p(s|\theta)$
- We exploit this product form to introduce a new reinforcement learning algorithm

- We consider MDPs and policy families $\pi(a|s,\theta)$ such that the Markov chain $(S_t,t=0,1,2,\ldots)$ has a **product-form stationary distribution** $p(s|\theta)$
- We exploit this product form to introduce a new reinforcement learning algorithm
- We show that this algorithm has nice convergence properties

- We consider MDPs and policy families $\pi(a|s,\theta)$ such that the Markov chain $(S_t,t=0,1,2,\ldots)$ has a product-form stationary distribution $p(s|\theta)$
- We exploit this product form to introduce a new reinforcement learning algorithm
- We show that this algorithm has nice convergence properties
- Main contributions:
 - Product-form distributions as exponential families
 - Score-aware gradient estimator (SAGE)
 - SAGE-based policy-gradient algorithm
 - Onvergence result (work in progress)

$$p(s|\theta) = \frac{1}{Z(\theta)} \prod_{i=1}^{n} \rho_i(\theta)^{x_i(s)}$$

$$p(s|\theta) = \frac{1}{Z(\theta)} \prod_{i=1}^n \underbrace{\frac{\rho_i(\theta)}{x_i(s)}}_{\text{Depends on } \theta}$$

$$p(s|\theta) = \frac{1}{Z(\theta)} \prod_{i=1}^n \frac{\rho_i(\theta)}{\sum_{s=1}^n \rho_i(\theta)} \frac{\text{Depends on } s}{\text{Depends on } \theta}$$

Product-form distribution

$$p(s|\theta) = \frac{1}{Z(\theta)} \prod_{i=1}^{n} \rho_i(\theta)^{x_i(s)}$$

• Feature function $x = (x_1, x_2, \dots, x_n)$

$$p(s|\theta) = \frac{1}{Z(\theta)} \prod_{i=1}^{n} \rho_i(\theta)^{x_i(s)}$$

- Feature function $x = (x_1, x_2, \dots, x_n)$
- Load function $\rho = (\rho_1, \rho_2, \dots, \rho_n)$

$$p(s|\theta) = \frac{1}{Z(\theta)} \prod_{i=1}^{n} \rho_i(\theta)^{x_i(s)}$$

- Feature function $x = (x_1, x_2, \dots, x_n)$
- Load function $\rho = (\rho_1, \rho_2, \dots, \rho_n)$
- Partition function Z

$$Z(\theta) = \sum_{s} \prod_{i=1}^{n} \rho_i(\theta)^{x_i(s)}$$

$$p(s|\theta) = \frac{1}{Z(\theta)} \prod_{i=1}^{n} \rho_i(\theta)^{x_i(s)}$$

$$\log p(s|\theta) = \langle \log \rho(\theta), x(s) \rangle - \log Z(\theta)$$

- Feature function $x = (x_1, x_2, \dots, x_n)$
- Load function $\rho = (\rho_1, \rho_2, \dots, \rho_n)$
- Partition function Z

$$Z(\theta) = \sum_{s} \prod_{i=1}^{n} \rho_i(\theta)^{x_i(s)}$$

$$p(s|\theta) = \frac{1}{Z(\theta)} \prod_{i=1}^{n} \rho_i(\theta)^{x_i(s)} \qquad \log p(s|\theta) = \langle \log \rho(\theta), x(s) \rangle - \log Z(\theta)$$

- Feature function $x=(x_1,x_2,\ldots,x_n)$ Feature function $x=(x_1,x_2,\ldots,x_n)$
- Load function $\rho = (\rho_1, \rho_2, \dots, \rho_n)$
- Partition function Z

$$Z(\theta) = \sum_{s} \prod_{i=1}^{n} \rho_i(\theta)^{x_i(s)}$$

$$p(s|\theta) = \frac{1}{Z(\theta)} \prod_{i=1}^{n} \rho_i(\theta)^{x_i(s)} \qquad \log p(s|\theta) = \langle \log \rho(\theta), x(s) \rangle - \log Z(\theta)$$

- Feature function $x=(x_1,x_2,\ldots,x_n)$ Feature function $x=(x_1,x_2,\ldots,x_n)$
- Load function $\rho = (\rho_1, \rho_2, \dots, \rho_n)$ ——— Log-load function $\log \rho = (\log \rho_1, \dots, \log \rho_n)$
- Partition function Z

$$Z(\theta) = \sum_{s} \prod_{i=1}^{n} \rho_i(\theta)^{x_i(s)}$$

$$p(s|\theta) = \frac{1}{Z(\theta)} \prod_{i=1}^{n} \rho_i(\theta)^{x_i(s)} \qquad \log p(s|\theta) = \langle \log \rho(\theta), x(s) \rangle - \log Z(\theta)$$

- Feature function $x=(x_1,x_2,\ldots,x_n)$ Feature function $x=(x_1,x_2,\ldots,x_n)$
- Load function $\rho = (\rho_1, \rho_2, \dots, \rho_n)$ ——— Log-load function $\log \rho = (\log \rho_1, \dots, \log \rho_n)$

$$Z(\theta) = \sum_{s} \prod_{i=1}^{n} \rho_i(\theta)^{x_i(s)} \qquad \log Z(\theta) = \log \left(\sum_{s} e^{\langle \log \rho(\theta), x(s) \rangle} \right)$$

② Score-aware gradient estimator (SAGE)

• The score is the gradient of the log-likelihood with respect to the parameter vector:

"Likelihood" =
$$p(s|\theta) \rightarrow$$
 "Score" = $\nabla_{\theta} \log p(s|\theta) = (\partial_{\theta_i} \log p(s|\theta), i = 1, 2, \dots, n)$

② Score-aware gradient estimator (SAGE)

• The **score** is the gradient of the log-likelihood with respect to the parameter vector:

"Likelihood" =
$$p(s|\theta) \rightarrow \text{"Score"} = \nabla_{\theta} \log p(s|\theta) = (\partial_{\theta_i} \log p(s|\theta), i = 1, 2, \dots, n)$$

Theorem

Recalling that $(S, A, R) \sim$ stationary distribution of $((S_t, A_t, R_{t+1}), t = 0, 1, 2, ...)$, we have

$$\begin{aligned} \partial_{\theta_i} \log p(s|\theta) &= \langle \partial_{\theta_i} \log \rho(\theta), x(s) - \mathbb{E}[x(S)] \rangle, \\ \partial_{\theta_i} J(\theta) &= \langle \partial_{\theta_i} \log \rho(\theta), \mathrm{Cov}[x(S), R] \rangle + \mathbb{E}[\partial_{\theta_i} \log \pi(A|S, \theta)R]. \end{aligned}$$

② Score-aware gradient estimator (SAGE)

• The **score** is the gradient of the log-likelihood with respect to the parameter vector:

"Likelihood" =
$$p(s|\theta) \rightarrow \text{"Score"} = \nabla_{\theta} \log p(s|\theta) = (\partial_{\theta_i} \log p(s|\theta), i = 1, 2, \dots, n)$$

Theorem

Recalling that $(S,A,R) \sim$ stationary distribution of $((S_t,A_t,R_{t+1}),t=0,1,2,\ldots)$, we have

$$\begin{split} \partial_{\theta_i} \log p(s|\theta) &= \langle \partial_{\theta_i} \log \rho(\theta), x(s) - \mathbb{E}[x(S)] \rangle, \\ \partial_{\theta_i} J(\theta) &= \langle \partial_{\theta_i} \log \rho(\theta), \mathrm{Cov}[x(S), R] \rangle + \mathbb{E}[\partial_{\theta_i} \log \pi(A|S, \theta)R]. \end{split}$$

• Main take-away: This gives us an estimator for $\nabla_{\theta}J(\theta)=(\partial_{\theta_i}J(\theta),i=1,\ldots,n)$.

• Typical policy-gradient algorithm:

- 1: Initialize S_0 and θ_0
- 2: **for** $t = 0, 1, 2, \dots$ **do**
- 3: Sample $A_t \sim \pi(\cdot|S_t, \theta_t)$
- 4: Take action A_t and observe S_{t+1}, R_{t+1}
- 5: Estimate $\llbracket \nabla_{\theta} J(\theta_t) \rrbracket$ using the history $S_0, \theta_0, A_0, R_1, \dots, S_t, \theta_t, A_t, R_{t+1}, S_{t+1}$
- 6: Update $\theta_{t+1} \leftarrow \theta_t + \alpha \llbracket \nabla_{\theta} J(\theta_t) \rrbracket$
- 7: end for

• Typical policy-gradient algorithm:

- 1: Initialize S_0 and θ_0
- 2: **for** $t = 0, 1, 2, \dots$ **do**
- 3: Sample $A_t \sim \pi(\cdot|S_t, \theta_t)$
- 4: Take action A_t and observe S_{t+1}, R_{t+1}
- 5: Estimate $\llbracket \nabla_{\theta} J(\theta_t) \rrbracket$ using the history $S_0, \theta_0, A_0, R_1, \dots, S_t, \theta_t, A_t, R_{t+1}, S_{t+1}$
- 6: Update $\theta_{t+1} \leftarrow \theta_t + \alpha \llbracket \nabla_{\theta} J(\theta_t) \rrbracket$ Estimate
- 7: end for

• Typical policy-gradient algorithm:

- 1: Initialize S_0 and θ_0
- 2: **for** $t = 0, 1, 2, \dots$ **do**
- 3: Sample $A_t \sim \pi(\cdot|S_t, \theta_t)$
- 4: Take action A_t and observe S_{t+1}, R_{t+1}
- 5: Estimate $\llbracket \nabla_{\theta} J(\theta_t) \rrbracket$ using the history $S_0, \theta_0, A_0, R_1, \dots, S_t, \theta_t, A_t, R_{t+1}, S_{t+1} \rrbracket$ How?
- 6: Update $\theta_{t+1} \leftarrow \theta_t + \alpha \llbracket \nabla_{\theta} J(\theta_t) \rrbracket$ Estimate
- 7: end for

- Typical policy-gradient algorithm:
 - 1: Initialize S_0 and θ_0
 - 2: **for** $t = 0, 1, 2, \dots$ **do**
 - 3: Sample $A_t \sim \pi(\cdot|S_t, \theta_t)$
 - 4: Take action A_t and observe S_{t+1}, R_{t+1}
 - 5: Estimate $\llbracket \nabla_{\theta} J(\theta_t) \rrbracket$ using the history $S_0, \theta_0, A_0, R_1, \dots, S_t, \theta_t, A_t, R_{t+1}, S_{t+1}$ How?
 - 6: Update $\theta_{t+1} \leftarrow \theta_t + \alpha \llbracket \nabla_{\!\theta} J(\theta_t) \rrbracket$ Estimate
 - 7: end for
- Actor-critic applies the policy-gradient theorem (Sutton and Barto, 2018):

$$\llbracket \partial_{\theta_i} J(\theta_t) \rrbracket \leftarrow (\llbracket \mathbb{E}[R] \rrbracket - \llbracket v \rrbracket(S_t)) \partial_{\theta_i} \log \pi(A_t | S_t, \theta_t).$$

- Typical policy-gradient algorithm:
 - 1: Initialize S_0 and θ_0
 - 2: **for** $t = 0, 1, 2, \dots$ **do**
 - 3: Sample $A_t \sim \pi(\cdot|S_t, \theta_t)$
 - 4: Take action A_t and observe S_{t+1}, R_{t+1}
 - 5: Estimate $\llbracket \nabla_{\theta} J(\theta_t) \rrbracket$ using the history $S_0, \theta_0, A_0, R_1, \dots, S_t, \theta_t, A_t, R_{t+1}, S_{t+1} \rrbracket$ How?
 - 6: Update $\theta_{t+1} \leftarrow \theta_t + \alpha \llbracket \nabla_{\theta} J(\theta_t) \rrbracket$ Estimate
 - 7: end for
- Actor-critic applies the policy-gradient theorem (Sutton and Barto, 2018):

$$\llbracket \partial_{\theta_i} J(\theta_t) \rrbracket \leftarrow (\llbracket \mathbb{E}[R] \rrbracket - \llbracket v \rrbracket(S_t)) \partial_{\theta_i} \log \pi(A_t | S_t, \theta_t).$$

• We instead estimate $\llbracket \nabla_{\theta} J(\theta_t) \rrbracket$ with a score-aware gradient estimator (SAGE):

$$[\![\partial_{\theta_i} J(\theta_t)]\!] \leftarrow \langle \partial_{\theta_i} \log \rho(\theta_t), [\![\operatorname{Cov}[x(S), R]]\!] \rangle + [\![\mathbb{E}[\partial_{\theta_i} \log \pi(A|S, \theta)R]]\!].$$

Example 1: M/M/1 Queue with Admission Control

Example 1: M/M/1 Queue with Admission Control

Example 1: M/M/1 Queue with Admission Control

Example 2: Load Balancing

Example 2: Load Balancing

Main contributions

- Product-form distributions as exponential families
- Score-aware gradient estimator (SAGE)
- SAGE-based policy-gradient algorithm
- Convergence result (work in progress)

Product-form stationary distribution

$$\log p(s|\theta) = \langle \log \rho(\theta), x(s) \rangle - \log Z(\theta)$$

$$\downarrow$$

 $\partial_{\theta_i} \log p(s|\theta) = \langle \partial_{\theta_i} \log \rho(\theta), x(s) - \mathbb{E}[x(S)] \rangle$

Score-aware gradient estimator (SAGE)

Main contributions

- Product-form distributions as exponential families
- Score-aware gradient estimator (SAGE)
- SAGE-based policy-gradient algorithm
- Convergence result (work in progress)

Product-form stationary distribution

$$\log p(s|\theta) = \langle \log \rho(\theta), x(s) \rangle - \log Z(\theta)$$

$$\downarrow$$

$$\partial_{\theta_s} \log p(s|\theta) = \langle \partial_{\theta_s} \log \rho(\theta), x(s) - \mathbb{E}[x(S)] \rangle$$

Score-aware gradient estimator (SAGE)

Future research directions

Run extensive numerical results on more challenging examples.

Main contributions

- Product-form distributions as exponential families
- Score-aware gradient estimator (SAGE)
- SAGE-based policy-gradient algorithm
- Convergence result (work in progress)

Product-form stationary distribution

$$\log p(s|\theta) = \langle \log \rho(\theta), x(s) \rangle - \log Z(\theta)$$

$$\downarrow$$

$$\partial_{\theta} \log p(s|\theta) = \langle \partial_{\theta} \log \rho(\theta), x(s) - \mathbb{E}[x(S)] \rangle$$

Score-aware gradient estimator (SAGE)

Future research directions

- Run extensive numerical results on more challenging examples.
- Better estimators for covariance and expectation: robust covariance, etc.

Main contributions

- Product-form distributions as exponential families
- Score-aware gradient estimator (SAGE)
- SAGE-based policy-gradient algorithm
- Onvergence result (work in progress)

Product-form stationary distribution $\log p(s|\theta) = \langle \log \rho(\theta), x(s) \rangle - \log Z(\theta)$ \downarrow $\partial_{\theta_i} \log p(s|\theta) = \langle \partial_{\theta_i} \log \rho(\theta), x(s) - \mathbb{E}[x(S)] \rangle$ Score-aware gradient estimator (SAGE)

Future research directions

- Run extensive numerical results on more challenging examples.
- Better estimators for covariance and expectation: robust covariance, etc.
- Applications to (queueing) systems where the stationary distribution is known only *up to a multiplicative constant*.