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Reinforcement Learning

@ A agent learns an optimal policy by interacting with an environment that sends rewards
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Reinforcement Learning

@ A agent learns an optimal policy by interacting with an environment that sends rewards

o Markov decision process with a sequence
So, Ao, R1, 51, A1, Ra, So, A2, R, . ..

Source: Wikipedia (modified)
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Reinforcement Learning

@ A agent learns an optimal policy by interacting with an environment that sends rewards
o Markov decision process with a sequence
SO, AO, Rl, Sl, Al, RQ, SQ, AQ, R3, P
Si=s
Ar=a

H / _ St+1=S/
e Environment P(s',r|s,a) = IP’[RHFT

Source: Wikipedia (modified)
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Reinforcement Learning

@ A agent learns an optimal policy by interacting with an environment that sends rewards
o Markov decision process with a sequence
SO, AO, Rl, Sl, Al, RQ, SQ, AQ, R3, P
Si=s
Ar=a

H / _ St+1=S/
e Environment P(s',r|s,a) = IP’[RHFT

e Policy 7(als,8) = P[A: = a| St = ]

Source: Wikipedia (modified)
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Reinforcement Learning

A agent learns an optimal policy by interacting with an environment that sends rewards

o Markov decision process with a sequence
SO, AO, Rl, Sl, Al, RQ, SQ, AQ, R3, P

Si=s

Ar=a

H / _ St+1=S/
Environment P(s',r|s,a) = IP’[RHFT

Policy m(als,0) = P[A; = a| St = s]

@ Goal: Find # that maximizes the average reward rate
1 X
0= i 1350 -1

Source: Wikipedia (modified)
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Reinforcement Learning

@ A agent learns an optimal policy by interacting with an environment that sends rewards
o Markov decision process with a sequence
SO, AO, Rl, Sl, Al, RQ, SQ, AQ, R3, P
H ! _ Siy1=s"| Si=s
Environment P(s',r|s,a) = IP’[RHFT At:a]

Policy m(als,0) = P[A; = a| St = s]

Goal: Find 6 that maximizes the average reward rate

J(#) = lim Z]ERt

T—+oo T
Source: Wikipedia (modified)

S ~ p(-|0) stationary distribution of (S, t =0,1,2,...)
(S, A, R) ~ stationary distribution of ((S¢, Ay, Riy1),t=0,1,2,...)
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Example 1: M/M/1 Queue with Admission Control

Actions: accept or reject

Céline Comte — CNRS

Reward o per accepted job

Arrival rate A > 0, service rate > A
State: queue length s € {0,1,2,...}

Holding cost n per job per time unit
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Example 1: M/M/1 Queue with Admission Control

@ Arrival rate A > 0, service rate > A s
—
o State: queue length s € {0,1,2,...
A s— =] — T (D —
@ Actions: accept or reject 1
@ Reward « per accepted job e
@ Holding cost n per job per time unit

+oo +00

1

Average reward rate J(0) = o x (Zp(s|9)7r(accept]s,0)> —n X (Zp(s\@)s) <3
s=0 s=0
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Example 1: M/M/1 Queue with Admission Control

@ Arrival rate A > 0, service rate > A s
—
o State: queue length s € {0,1,2,...
A s— =] — T (D —
@ Actions: accept or reject 1
@ Reward « per accepted job e
@ Holding cost n per job per time unit

+oo +00

1

Average reward rate J(0) = o x (Zp(s|9)7r(accept]s,0)> —n X (Zp(s\@)s) <3
s=0 s=0

v
14 e

Policy m(accept|s,d) =
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Example 1: M/M/1 Queue with Admission Control

@ Arrival rate A > 0, service rate > A s
—
o State: queue length s € {0,1,2,...
A s— =] — T (D —
@ Actions: accept or reject 1
@ Reward « per accepted job e
@ Holding cost n per job per time unit

+oo +00

1

Average reward rate J(0) = o x (Zp(s|9)7r(accept]s,0)> —n X (Zp(s\@)s) <3
s=0 s=0

Policy m(accept|s,d) = with parameter vector 6 = (6,01, .. .,0k)

1 + e_emin(s,k)
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Example 1: M/M/1 Queue with Admission Control

@ Arrival rate A > 0, service rate > A s
—
o State: queue length s € {0,1,2,...
A s— =] — T (D —
@ Actions: accept or reject 1
@ Reward « per accepted job e
@ Holding cost n per job per time unit

+o0 +oo

1

@ Average reward rate J(f) = a x (Zp(s|9)7r(accept]s,0)> —n X (Zp(s\@)s) <3
s=0 s=0

e Policy m(accept|s,t) = —————— with parameter vector 0 = (0o, 01, ..., 0)
1 + e min(s,k)
N Uiy /) min(s,k)
e Stationary distribution p(s|f) | I <7r(accept|i,0)> <7r(accept|k;,9)>
L\ 1
1=0
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Example 1: M/M/1 Queue with Admission Control

@ Arrival rate A > 0, service rate > A s
—
o State: queue length s € {0,1,2,...
A s— =] — T (D —
@ Actions: accept or reject 1
@ Reward « per accepted job e
@ Holding cost n per job per time unit

+o0 +oo

1

@ Average reward rate J(f) = a x (Zp(s|9)7r(accept]s,0)> —n X (Zp(s\@)s) <3
s=0 s=0

e Policy m(accept|s,t) = —————— with parameter vector 0 = (0o, 01, ..., 0)
1 + e min(s,k)
k=1 Ls>iy| /[y min(s,k)
e Stationary distribution p(s|f) | I <7r(accept|i,0)) <7r(accept|k:,9)>
L\ 1
1=0
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Example 2: Load Balancing

Jobs arrive as a Poisson process with rate A

M/M/1 queues with service rates i, f2, ..., fin

Upper-bound ¢ on the number of jobs in the system

State: vector s = (s1, 82, ..., 8,) of queue sizes

Actions: assign to some server i

Holding cost 7 per job per time unit
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Example 2: Load Balancing

Jobs arrive as a Poisson process with rate A

M/M/1 queues with service rates i, f2, ..., fin

Upper-bound ¢ on the number of jobs in the system

State: vector s = (s1, 82, ..., 8,) of queue sizes

Actions: assign to some server i

Holding cost 7 per job per time unit

Policy m(server i|-,0) =

2

v [P

el

i=1¢"

51

52
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Example 2: Load Balancing

Jobs arrive as a Poisson process with rate A

M/M/1 queues with service rates i, f2, ..., fin

Upper-bound ¢ on the number of jobs in the system

State: vector s = (s1, 82, ..., 8,) of queue sizes

Actions: assign to some server i

Holding cost 7 per job per time unit

Policy m(server i|-,0) =

2

v [P

el

i=1¢"

n )\ S5
Stationary distribution p(s|6) o H <7r(server il 9))
w

i=1
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v [P

el
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Our Approach

e We consider MDPs and policy families 7(als, @) such that the Markov chain
(St,t =0,1,2,...) has a product-form stationary distribution p(s|0)
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Our Approach

e We consider MDPs and policy families 7(als, @) such that the Markov chain
(St,t =0,1,2,...) has a product-form stationary distribution p(s|0)

@ We exploit this product form to introduce a new reinforcement learning algorithm

@ We show that this algorithm has nice convergence properties
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Our Approach

e We consider MDPs and policy families 7(als, @) such that the Markov chain

(St,t =0,1,2,...) has a product-form stationary distribution p(s|0)
@ We exploit this product form to introduce a new reinforcement learning algorithm
@ We show that this algorithm has nice convergence properties

@ Main contributions:

@ Product-form distributions as exponential families
@ Score-aware gradient estimator (SAGE)

© SAGE-based policy-gradient algorithm

@ Convergence result (work in progress)
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(D Product-Form Distributions as Exponential Families

@ Product-form distribution

p(el6) = o [[ i)
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(D Product-Form Distributions as Exponential Families

@ Product-form distribution

p(sl6) = o [[ @)=
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(D Product-Form Distributions as Exponential Families

@ Product-form distribution
o Depends on s

n

p(610) = 5 [ L@

=1
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(D Product-Form Distributions as Exponential Families

@ Product-form distribution
1 2i(s)
plsl0) = T pi(0) ™

e Feature function z = (z1,z2,...,2,)
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(D Product-Form Distributions as Exponential Families

@ Product-form distribution

p(s10) = o i)

e Feature function z = (z1, 29, ...

e Load function p = (p1, p2,- ..
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(D Product-Form Distributions as Exponential Families

@ Product-form distribution
p(sl) = L [ o)
Z(0) ;5

Feature function z = (z1,z2,...,2y)

Load function p = (p1,p2,. .-, pn)

Partition function Z

20)=>_I[ro)"®

s =1
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(D Product-Form Distributions as Exponential Families

Product-form distribution

p(el6) = o [[ i)

Feature function = = (x1, 2o, ...

Load function p = (p1, p2, ...
Partition function Z

20)=>_I[ro)"®

s =1

,Tp)

7,0n)

Exponential family of distributions

log p(s]f) = (log p(0), x(s)) — log Z(0)
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(D Product-Form Distributions as Exponential Families

@ Product-form distribution Exponential family of distributions
1 o zi(8)
P(s16) = 75 [ 70 log p(s]0) = (log p(6), 2(s)) — log Z(8)
i=1
e Feature function z = (z1,29,...,%y) Feature function x = (z1,9,...,2,)
e Load function p = (p1,p2,. .-, pn)

Partition function Z

20)=>_I[ro)"®

s =1
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(D Product-Form Distributions as Exponential Families

Product-form distribution

p(el6) = o [[ i)

Feature function = = (x1, 2o, ...

Load function p = (p1, p2, ...
Partition function Z

20)=>_I[ro)"®

s =1

,Tp)

7,0n)

Exponential family of distributions
log p(s]0) = (log p(0), z(s)) — log Z(0)

Feature function z = (x1,x2,...,%,)

Log-load function log p = (log p1, ..., log py)
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(D Product-Form Distributions as Exponential Families

Product-form distribution

Exponential family of distributions

p(s10) = gy LLoi(0)* log p(s/0) = (log p(0), z(s)) — log Z(0)
i=1
Feature function z = (21,22, ...,2;,) Feature function x = (z1,9,...,2,)
Load function p = (p1, p2,---,pn) Log-load function log p = (log p1, . .., log p,)

Partition function Z

Log-partition function log Z

2(0) = _[L )™ log Z(0) = log (Z e<logp<0>w<s>>>

s =1

S

Céline Comte — CNRS

Tailoring Policy Gradient to Product-Form Queueing Systems



(2) Score-aware gradient estimator (SAGE)

@ The score is the gradient of the log-likelihood with respect to the parameter vector:

“Likelihood” = p(s|f) — “Score” = Vjlogp(s|0) = (s, logp(s|0),i =1,2,...,n)
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(2) Score-aware gradient estimator (SAGE)

@ The score is the gradient of the log-likelihood with respect to the parameter vector:

“Likelihood” = p(s|f) — “Score” = Vjlogp(s|0) = (s, logp(s|0),i =1,2,...,n)

Recalling that (S, A, R) ~ stationary distribution of ((St, A¢, Re41),t =0,1,2,...), we have

891' Ing(8|6) = <891 IOg p(9)7 .’IJ(S) - E[l’(S)D,
0p,J(0) = (0p, log p(8), Cov[z(S), R]) + E[0, log m(A|S, §)R].
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(2) Score-aware gradient estimator (SAGE)

@ The score is the gradient of the log-likelihood with respect to the parameter vector:

“Likelihood” = p(s|f) — “Score” = Vjlogp(s|0) = (s, logp(s|0),i =1,2,...,n)

Recalling that (S, A, R) ~ stationary distribution of ((St, A¢, Re41),t =0,1,2,...), we have

891' Ing(8|6) = <891 IOg p(9)7 .’IJ(S) - E[l’(S)D,
0p,J(0) = (0p, log p(8), Cov[z(S), R]) + E[0, log m(A|S, §)R].

e Main take-away: This gives us an estimator for VyJ(0) = (0p,J(0),i = 1,...,n).
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(3) SAGE-Based Policy-Gradient Algorithm

@ Typical policy-gradient algorithm:
1: Initialize Sy and 6
2: fort=0,1,2,... do
Sample At ~ TF(”St, Ht)
4 Take action A; and observe S; 11, Ry11
5 Estimate [VyJ(6;)] using the history So, 00, Ao, R1, ..., St, 0, At, Rit1, Si+1
6: Update 9t+l — 9t + a[[VgJ(Gt)]]
7: end for

w
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(3) SAGE-Based Policy-Gradient Algorithm

@ Typical policy-gradient algorithm:
1: Initialize Sy and 6
2: fort=0,1,2,... do
Sample At ~ TF(”St, Ht)
4 Take action A; and observe S;11, Ry11
5 Estimate [[ng(et)]] using the history Sp, 09, Ao, R1, ..., St, 0%, Ag, Riyq, St+1
6: Update 9t+l — 9t + a[[VgJ(Gt)]]
7: end for

w
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(3) SAGE-Based Policy-Gradient Algorithm

@ Typical policy-gradient algorithm:
1: Initialize Sy and 6
2: fort=0,1,2,... do
3: Sample A; ~ TF(”St, Ht)
4 Take action A; and observe S;11, Ry11
5 Estimate [[ng(et)]] using the history Sp, 09, Ao, R1, ..., St, 0%, Ag, Riyq, St+1
6: Update 9t+l — 9t + a[[VgJ(Gt)]]
7: end for

@ Actor-critic applies the policy-gradient theorem (Sutton and Barto, 2018):
[06,7 (0.)] < ([E[R]] — [v](St))0e, log w(Ay| Sy, 0y).
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(3) SAGE-Based Policy-Gradient Algorithm

@ Typical policy-gradient algorithm:

1: Initialize Sy and 6

2: fort=0,1,2,... do

3: Sample A; ~ TF(”St, Ht)

4 Take action A; and observe S;11, Ry11

5 Estimate [[ng(et)]] using the history Sp, 09, Ao, R1, ..., St, 0%, Ag, Riyq, St+1
6: Update 9t+l — 9t + a[[VgJ(Gt)]]

7: end for

@ Actor-critic applies the policy-gradient theorem (Sutton and Barto, 2018):
[06,7 (0.)] < ([E[R]] — [v](St))0e, log w(Ay| Sy, 0y).

@ We instead estimate [VpJ(6;)] with a score-aware gradient estimator (SAGE):
[00,7(6:)] < (o, log p(0:), [Cov[z(S5), Rl]) + [E[p, log w(A|S, 0) R]]-
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Example 1: M/M/1 Queue with Admission Control
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Example 1: M/M/1 Queue with Admission Control
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Example 1: M/M/1 Queue with Admission Control
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Example 2: Load Balancing
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Example 2: Load Balancing
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Conclusion

) Main contributions Product-form Stationary distribution
@ Product-form distributions as exponential families log p(s|6) = (log p(6), z(s)) — log Z ()
@ Score-aware gradient estimator (SAGE) {
© SAGE-based policy—gradier)t algorithm Op, log p(s|0) = (9, log p(0), z(s) — E[z(S)])
@ Convergence result (work in progress) Score-aware gradient estimator (SAGE)
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Conclusion

@ Main contributions Product-form stationary distribution
@ Product-form distributions as exponential families log p(s|6) = (log p(6), z(s)) — log Z ()
@ Score-aware gradient estimator (SAGE) {

© SAGE-based policy-gradient algorithm

80, log p(s16) = (35, 10g p(9), 2(s) — Elz(S)])
@ Convergence result (work in progress)

Score-aware gradient estimator (SAGE)

@ Future research directions

o Run extensive numerical results on more challenging examples.
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o Run extensive numerical results on more challenging examples.
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Conclusion

@ Main contributions Product-form stationary distribution
@ Product-form distributions as exponential families log p(s|6) = (log p(6), z(s)) — log Z ()
@ Score-aware gradient estimator (SAGE) 1

© SAGE-based policy-gradient algorithm

8p,log p(s16) = (84, 10g p(9), 2(s) — Elz(S)])
@ Convergence result (work in progress)

Score-aware gradient estimator (SAGE)

@ Future research directions

o Run extensive numerical results on more challenging examples.
o Better estimators for covariance and expectation: robust covariance, etc.

o Applications to (queueing) systems where the stationary distribution is known only up to a
multiplicative constant.
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