Good practices
on Python

(or coding can be fun and less difficult)

About me

Computational
Simulations x2

e High Performance : E)EIE) HTML
Computing x2 o D3 '
e Code design e BASH . .
e Fortran o Git e Python (Pandas, Numpy, Matplotlib, Scipy,

TensorFlow, Pytorch, Seaborn, Streamlit, Pyplot,...)

PhD on

Physics degree Computational
Chemistry

e PAon Fortranfor e Developerina Statistical Analysis
Claudia Ramirez physics project with +100 Forecasting
PhD | Data Scientist contributors and Stochastic Matching
+8.000 cites Reinforcement Learning

Generative modeling

Natural Language Processing

Teacher at the university for “Introduction to
Python”

X datacamp were ririna

CONTENTS

12 Top Data Science
Programming Languages
in 2023

Python

MATLAB

Ranked first in several programming languages popularity indices, including the TIOBE Index
and the PYPL Index, the popularity of Python has boomed in recent years and it remains the
most popular programming language. Python is an open-source, general-purpose
programming language with broad applicability not only in the data science industry, but
also in other domains, like web development and video game development.

TIOBE Programming Community Index

Python

Source: TIOBE Index

>>> import this
The Zen of Python, by Tim Peters

Beautiful is better than ugly.

Explicit is better than implicit.

Simple is better than complex.

Complex is better than complicated.

Flat is better than nested.

Sparse is better than dense.

Readability counts.

Special cases aren't special enough to break the rules.

Although practicality beats purity.

Errors should never pass silently.

Unless explicitly silenced.

In the face of ambiguity, refuse the temptation to guess.

There should be one-- and preferably only one --obvious way to do it.
Although that way may not be obvious at first unless you're Dutch.
Now is better than never.

Although never is often better than *right* now.

If the implementation is hard to explain, it's a bad idea.

If the implementation is easy to explain, it may be a good idea.
Namespaces are one honking great idea -- let's do more of those!

How to start coding something?

Th . k h If the implementation is hard to explain, it's a bad idea.
In t e Ste pS If the implementation is easy to explain, it may be a good idea.

U |' b . There should be one-- and preferably only one --obvious way to do it.
Se | ra rleS Although that way may not be obvious at first unless you're Dutch.

Beautiful is better than ugly.
Explicit is better than implicit.
Simple is better than complex.
Complex is better than complicated.
Flat is better than nested.

Sparse is better than dense.

Readability counts.
Special cases aren't special enough to break the rules.
Although practicality beats purity.

Errors should never pass silently.

Unless explicitly silenced.

In the face of ambiguity, refuse the temptation to guess.

There should be one-- and preferably only one --obvious way to do it.
Although that way may not be obvious at first unless you're Dutch.
Now is better than never.

Although never is often better than *right* now.

If the implementation is hard to explain, it's a bad idea.

If the implementation is easy to explain, it may be a good idea.
Namespaces are one honking great idea -- let's do more of those!

Think the steps

Initialize variables _
) . *create
a Read inputt variables Folderd]

b. Define random varidbles

Run main codex* (usual\y using a for or whie)
a Do some calculation

b. Update varidbles (and maybe store them)
c. Calculate metric(s)

Store resultst

Analyze resultsx (+tables, plots, etc)

Make README (you will thank. yourself)

Something general that could help (or not)
7

1-5 100
5-10 80
10-15 60
15-20 40
20+ 20

|

According to medium

8
e

https://medium.com/modern-stack/how-much-computer-code-has-been-written-c8c03100f459

1.

Ask to
your favorite
search engine

Be as detailed as
possible, you want
to find the closest
solution to you
problem but on
“mainstream”

2.

Read the
documentation

(and then some others)

Look at the

examples, run the
notebooks: see
how easy it is to
customize

Find someone to explain it

On YouTube;

DataEngineerOne
QuantumBlack
..find your flavor

To read:

Towards Data Science
Medium

12

Common libraries

U
0’0

PAaNC Pandas v N

NumPy v @ SciPy
L

Matplotlib v Scikit-learn v TensorFlow

ensorFloy

L]
D E Theano v K Keras v PyTorch
</

https:/www.linkedin.com/pulse/top-10-python-libraries-data-science-2023-akshay-gangshettiwar

https:/\www.datacamp.com/blog/top-python-libraries-for-data-science

https:/Mwww.dataguest.io/bloa/15-python-libraries-for-data-science/

https://www.simplilearn.com/top-python-libraries-for-data-science-article

13

https://www.linkedin.com/pulse/top-10-python-libraries-data-science-2023-akshay-gangshettiwar
https://www.datacamp.com/blog/top-python-libraries-for-data-science
https://www.dataquest.io/blog/15-python-libraries-for-data-science/
https://www.simplilearn.com/top-python-libraries-for-data-science-article

3.

Take your time

This may seem as
a “waste of time’,
but it's not: you
will earn time on
the long run

15

Avoid problems

Separate your project dependencies with your system
dependencies. Allow reproducibility in time.

Avoid headaches

Separate your I/O files and your pipelines into folders, name
your files in a useful way.

.

-

P notebooks
Vv

project
v

src

8

README.md

v

input

v

output

v

prep

v

main

v

post

18

Save energy

Put as many steps as you can into functions with
descriptive hames

1.

Add
readability

Everyone who
will deal with
your code will
thank you
(even your self
after holidays)

Initial
code

def gp sampler (

data: pd.DataFrame , db: pd.DataFrame ,

features: List[str], targets: List[str], features nn:
List[str],

List[str], targets prediction:

nn calculator: NearestNeighbors , max it: int, max trials: int, n jobs: int = 1,

doi = features + targets + [, ,
res = pd.DataFrame (=doi)

res[data.columns] = data

X train = data[features].values

y train = data[targets].values

yield { {res.shape[0]} : res}

=features, =targets)

for n in range (max it):
({n}")
model.fit (=x train,

new x, fx = model.optimize (

=y train)
=max trials,

distance , index = nn calculator.kneighbors(X=new x,
df = db.loc[index[0]]

new y = df[targets].values

new extra vars = df[[,
x nn = df[features].values

1] .values

np.append(x train , new x, =0), np.append(y train,

idx = len (res.index)
res.loc[idx , features] = new x[0]
res.loc[idx , features nn] = x nn[0]
res.loc[idx , targets] = new y[0]
res.loc[idx , targets prediction] = fx
res.loc ([

[

res.loc[idx ,] = distance[0]

if (res.shape[0] % 100) == O0:
idx = res.shape[0]
ini idx = (idx - 100)

{ {ini idx}-{idx} res[ini idx: idx]}

idx , [, 11 = new extra vars|[(

=n_jobs)

new y, =0

21

Final
code

64
BETTER

lines
(including functions)

def gp sampler (
data: pd.DataFrame , db: pd.DataFrame ,
features: List[str], targets: List[str], features nn: List[str], targets prediction:
List[str],
nn_calculator: NearestNeighbors , max it: int, max trials: int, n_jobs: int = 1,
) g
res, x train, y train = initialize variables(data , features, targets)
yield results(res, =True)
model = FOM (=features, =targets)
for n in range (max it):
print ({n}")
model. fit (=x train, =y train)
new x, fx = model.optimize (=max trials, =n_jobs)
new y, new extra vars, x nn, nn dist = get values from db(
=new_x, =db, =nn_calculator, =features, =targets
)
x train, y train = extend train set(new x , new y, x train, y train)

store values (
features , features nn, fx, new extra vars, new x, new y, nn dist, res,

targets prediction , x nn

if (res.shape[0O] % 100) == O0O:
yield results(res)

targets,

22

o

b -
Don’t scroll

2.

If you have code

ReCyC|e that is used in

(also when coding) another place
(even once)

Initial
code

lhs

lhs[lhs.quality == 1,

lhs[lhs.quality != 1,

gp_ori[(gp_ori.quality ==)

gp_ori[(gp_ori.quality !=)

gp ori

gp_treated[(gp_treated.quality ==

gp_treated[(gp_treated.quality !=

gp_treated

’ : ’
new_treated[(new_treated.quality ==

new_treated[(new_treated.quality !=

new_treated

&

(gp_ori.quality == N

(gp_ori.quality !=)1,

) | (gp_treated.quality ==

) & (gp_treated.quality !=

) | (new_treated.quality ==

) & (new_treated.quality !=

25

data = {
: create dict @f=lhs, = 7 =),
‘ : o e : create_dict (if=gp_ori, = ,

create dict (If=gp_treated, = ,
create_dict (if=new_treated, = , =
}
[
13 lef create dict(df: pd.DataFramg name: str, color: str) -> Dict:
BETTER R
: df[(df.quality ==) | (df.quality ==

Iines : df[(df.quality !=) & (df.quality !=

df

o

Don’t copy-paste

Save lives

Nobody charges you for writing more letters, and the
limitation in characters doesn’t exist in python. There is no
excuse: Use descriptive variable names.

Naming matters

Snake case Capwords Uppercase
UPPERCASE or also

this_is_snake_case ThislsCapWords THIS_IS_UPPER_CASE
Use it for constants

Use it for variables Use it for classes

and functions Kebab case
this-is-kebab-case
Use it on git*

You can know more things if you read: https:/peps.python.org/pep-0008/

29

https://peps.python.org/pep-0008/

Readability counts

X,V 1,], * _clean_* are not good variable name

(unless you are programming something extremely flexible that you could use
for many different problems, but probably is not the case)

train, test, res, idx, n_row, n_col, batch_size are
ok

(this are names that could be “broad” but their are still clear)

30

Make your work easier

There are things that make coding easier, use those things.

Use an

PCy PyCharm is awesome
?)

rFr "
Type Hint
B o

CoPylot
R

36

37

