SOLACE Seminars

Prediction-based Coflow Scheduling in Datacenter Networks

Olivier Brun, Balakrishna J. Prabhu, Oumayma Haddaji

LAAS-CNRS, Toulouse, France

October 12th, 2023

Solace Seminar, October 12th, 2023

INTRODUCTION

PROBLEM FORMULATION AND EXISTING WORKS

COFLOW SCHEDULING WITH PREDICTIONS

NUMERICAL RESULTS

CONCLUSION

Solace Seminar, October 12th, 2023

◆□▶ ◆□▶ ▲目▶ ▲目▶ 目 うのの

INTRODUCTION

Solace Seminar, October 12th, 2023

▲□▶▲□▶▲□▶▲□▶ □ のQの

Context

- Distributed computing frameworks: Hadoop MapReduce, Apache Spark
- Massive data transfers in datacenter networks (e.g., shuffle phase)
 - For some workloads, they can account for more than 50% of job completion times

Coflow: set of concurrent flows related to a common task

Solace Seminar, October 12th, 2023

イロト 不得 トイヨト イヨト 三日

Coflow scheduling

Minimization of average Coflow Completion Time (CCT)

Clairvoyant setting

- Source and destination ports as well as the precise volume of each flow are revealed upon the arrival of a coflow.
- ✓ NP-hard, inapproximable below a factor 2
- Efficient approximation algorithms, e.g., Varys or Sincronia¹

Non-clairvoyant setting

- Flow sizes remains unknown
- Scheduling schemes generalizing the LAS (e.g., Aalo) or RR (e.g., BlindFlow) scheduling disciplines.

S. Agarwal et al., Sincronia: Near-optimal network design for coflows. in Proc. ACM SIGCOMM, 2018.

¹

M. Shafiee et al., An improved bound for minimizing the total weighted completion time of coflows in datacenters, IEEE/ACM Trans. Netw., vol. 26, no. 4, 2018.

M. Chowdhury et al.,. Near optimal coflow scheduling in networks, in Proc. ACM SPAA, 2019.

Contributions

ML predictions are revealed to the coflow scheduler

- Actual flow sizes remain unknown and predictions are unreliable
- ✓ How to exploit predictions for coflow scheduling? Is it even advisable to do so?
- Approximation ratio of Sincronia as a function of the prediction error
- A Consistent and robust prediction-based coflow scheduling algorithm.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶

PROBLEM FORMULATION AND EXISTING WORKS

Solace Seminar, October 12th, 2023

◆□▶ ◆□▶ ▲目▶ ▲目▶ 目 うのの

System model and notations

• Big-Switch model: capacity b_{ℓ} for port ℓ .

Offline setting.

Problem formulation

$$\min_{r} \sum_{k \in \mathcal{C}} C_{k}$$
(P1)
s.t.
$$\sum_{k \in \mathcal{C}} \sum_{j \in F_{k,\ell}} r^{k,j}(t) \leq b_{\ell}, \quad \forall \ell \in \mathcal{L}, \forall t \in \mathcal{T},$$
(1)
$$\int_{0}^{C_{k}} r^{k,j}(t) dt \geq v^{k,j}, \quad \forall j \in F_{k}, \forall k \in \mathcal{C},$$
(2)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Solace Seminar, October 12th, 2023

Example

- All fabric ports have the same normalized bandwidth of 1
- All flows of coflow 1 have volume 1
- All other flows have volume $2 + \epsilon$

• The goal is to allocate flow rates so as to minimize $(C_1 + C_2 + C_3 + C_4 + C_5)/5$.

Solace Seminar, October 12th, 2023

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

э

Example - Clairvoyant offline optimum

Time-indexed MILP formulation for the clairvoyant setting²

• Average CCT is $OPT = (4 + 4 \times 2)/5 = 2.4$

2

Y. Magnouche et al., Branch-and-benders-cut algorithm for the weighted coflow completion time minimization problem, INOC 2022.

Solace Seminar, October 12th, 2023

Non-clairvoyant coflow scheduling - BlindFlow

▶ Round Robin allocation on port ℓ : $r_{\ell}(t) = b_{\ell}/n_{\ell}(t)$

Generalized RR allocation:

 $r^{k,j}(t) = \min\{r_i(t), r_o(t)\} = \frac{1}{\max\{1/r_i(t), 1/r_o(t)\}}$

for ongoing flow $j \in F_k$ with ingress/egress ports *i* and *o*.

• BlindFlow rate allocation³ :
$$r^{k,j}(t) = \frac{1}{1/r_i(t)+1/r_o(t)}$$

Theorem

The rate allocation of BlindFlow is feasible and $8 \times p$ approximate, where $p = \max_{k \in C} |F_k|$ is the maximum number of flows that any coflow can have.

3

A. Bhimaraju, D. Nayak and R. Vaze, Non-clairvoyant scheduling of coflows, WiOpt 2020, 2020.

Example – Generalized RR allocation

All fabric ports have the same normalized bandwidth of 1

Flows of coflow 1 have volume 1, all others have volume 2

Solace Seminar, October 12th, 2023

・ロト ・ 戸 ・ ・ ヨト ・ ヨト ・ ヨ

Clairvoyant coflow scheduling - Sincronia

- Transport layer may not be able to enforce an arbitrary per-flow rate allocation.
- Sincronia orders the coflows in some appropriate order, and leverage priority forwarding mechanisms
 - 1. σ -order: coflow $\sigma(n)$ has priority over coflow $\sigma(n+1)$
 - 2. Greedy rate allocation: a flow is blocked iff ingress/egress port is busy serving a higher-priority flow

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶

Clairvoyant coflow scheduling – Sincronia σ -order

► CCT of coflow k at port ℓ in isolation: $p_{\ell,k} = \sum_{j \in F_{k,\ell}} v_{k,j} / b_{\ell}$

Method for computing the σ-order:

$$\begin{split} & \text{Min} \sum_{k \in \mathcal{C}} C_k \qquad (\text{P3-Primal}) \qquad & \text{Max} \sum_{\ell \in \mathcal{L}} \sum_{S \subseteq \mathcal{C}} f_\ell(S) \, y_{\ell,S} \quad (\text{P3-Dual}) \\ & \text{s.t} \qquad & \text{s.t} \\ & \sum_{k \in S} p_{\ell,k} C_k \geq f_\ell(S), \ \ell \in \mathcal{L}, S \subseteq \mathcal{C}, \qquad & \sum_{S:k \in S} \sum_{\ell \in \mathcal{L}} p_{\ell,k} y_{\ell,S} \leq 1, \ k \in \mathcal{C}, \\ & C_k \geq 0, \ k \in \mathcal{C}, \qquad & y_{\ell,S} \geq 0, \ \ell \in \mathcal{L}, S \subseteq \mathcal{C}. \end{split}$$

where $f_{\ell}(S) = \frac{1}{2} \sum_{k \in S} (p_{\ell,k})^2 + \frac{1}{2} \left(\sum_{k \in S} p_{\ell,k} \right)^2$.

 Problem P3-Primal is a relaxation of the original coflow scheduling problem

Solace Seminar, October 12th, 2023

Clairvoyant coflow scheduling – Sincronia σ -order

► Sincronia primal-dual algorithm 1: Initialize all dual variables $y_{\ell,S}$ to 0 and set $w_k = 1$ for all $k \in C$ 2: $S \leftarrow C$ 3: for $t = n \dots 1$ do 4: $b \leftarrow \operatorname{argmax}_{\ell \in \mathcal{L}} \sum_{k \in S} p_{\ell,k}$ ▷ Bottleneck port 5: $k^* \leftarrow \operatorname{argmin}_{k \in S} \left(\frac{w_k}{p_{b,k}}\right)$ ▷ Coflow with largest weighted proc. time 6: $C_{k^*} \leftarrow \sum_{k \in S} p_{b,k}$ and $y_{b,S} \leftarrow \frac{w_{k^*}}{p_{b,k^*}}$ ▷ Set primal and dual variables 7: $w_k \leftarrow w_k - w_{k^*} \frac{p_{b,k}}{p_{b,k^*}}$ for all $k \in S$ ▷ Update coflow weights 8: $\sigma(t) \leftarrow k^*$ ▷ Set priority of coflow k^* 9: $S \leftarrow S \setminus \{k^*\}$ ▷ Remove k^* from the set of unscheduled coflows 10: end for

Theorem

Sincronia provides a feasible solution to problem P3-Primal whose cost is at most $2\times$ the optimal cost. As the Greedy rate allocation is 2-optimal, Sincronia achieves an average CCT within $4\times$ of the optimal one.

Solace Seminar, October 12th, 2023

Example – Sincronia

 \blacktriangleright σ -order

t	b	$\sigma(t)$	$\{w_1, w_2, w_3, w_4, w_5\}$	5
_	_	-	$\{1, 1, 1, 1, 1\}$	$\{1, 2, 3, 4, 5\}$
5	4	5	$\{\epsilon/(2+\epsilon),1,1,1,0\}$	$\{1, 2, 3, 4\}$
4	3	1	$\{0,1,1,1-\epsilon/2,0\}$	$\{2, 3, 4\}$
3	3	4	$\{0, 1, 1, 0, 0\}$	{2,3}
2	2	3	$\{0, 1, 0, 0, 0\}$	{2}
1	1	2	$\{0, 0, 0, 0, 0\}$	Ø

• Greedy rate allocation with $\sigma = \{2, 3, 4, 1, 5\}$

• Average CCT is $(4 + 3 \times 2 + 3)/5 = 2.6 \approx 1.08 \times OPT$

Solace Seminar, October 12th, 2023

イロト 不得 トイヨト イヨト 三日

COFLOW SCHEDULING WITH PREDICTIONS

Solace Seminar, October 12th, 2023

イロト 不得 トイヨト イヨト 二日

Sincronia with predictions

Sincronia is ran with predictions $\hat{v}^{k,j} = v^{k,j} + \Delta v^{k,j}$, where $\Delta v^{k,j}$ represents the prediction error

▶ Predicted transmission time of coflow $k \in C$ on port $\ell \in L$

$$\hat{p}_{\ell,k} = \sum_{j \in F_{k,\ell}} \frac{\hat{v}^{k,j}}{b_{\ell}} = p_{\ell,k} + \eta_{\ell,k},$$

• With
$$\mu_{\min} = \min_{\ell,k} \left(\frac{\hat{p}_{\ell,k}}{p_{\ell,k}} \right)$$
 and $\mu_{\max} = \max_{\ell,k} \left(\frac{\hat{p}_{\ell,k}}{p_{\ell,k}} \right)$,

 $\mu_{\min} p_{\ell,k} \leq \hat{p}_{\ell,k} \leq \mu_{\max} p_{\ell,k}, \quad \text{ for all } \ell \text{ and } k.$

Solace Seminar, October 12th, 2023

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

<

Sincronia with predictions

Theorem

Scheduling coflows in the order determined by Sincronia with predictions as inputs yields an average CCT which is at most $\min \left\{ 4 \times \left(\frac{\mu_{max}}{\mu_{min}}\right)^2, 2n \right\}$ the optimal one.

- The first upper bound depends on the prediction error, but the second one not (robustness).
- **Example**: if the relative prediction error on flow sizes is at most 50%, then $\mu_{min} \ge \frac{1}{2}$ and $\mu_{max} \le \frac{3}{2}$, so that the performance guarantee is min{36, 2*n*}.

Solace Seminar, October 12th, 2023

(日)

A consistent and robust prediction-based algorithm

Run Sincronia and RR in parallel

- Sincronia uses predictions to schedule coflows in the fabric over a fraction λ of time,
- RR schedules the coflows the rest of the time
- The resulting rate allocation is

$$r^{k,j}(t) = \lambda \times r^{k,j}_{SP}(t) + (1-\lambda) \times r^{k,j}_{RR}(t)$$

Theorem

Running in parallel Sincronia with predictions and RR yields an algorithm with competitive ratio min $\left(\frac{4}{\lambda}\left(\frac{\mu_{max}}{\mu_{min}}\right)^2, \frac{2}{\lambda}n, \frac{8p}{1-\lambda}\right)$

• The algorithm is min
$$\left\{\frac{2}{\lambda}n, \frac{8p}{1-\lambda}\right\}$$
-robust and $\frac{4}{\lambda}$ -consistent

Solace Seminar, October 12th, 2023

A ロ ト 4 同 ト 4 三 ト 4 三 ト 9 Q C

NUMERICAL RESULTS

Solace Seminar, October 12th, 2023

Random Instances

Random instance generation

- Number of coflows, number of ports and probability of a flow between two ingress/egress ports are given as inputs.
- Flow volumes follow a (truncated) Gaussian distribution.

Predictions

- $\hat{v}^{k,j} = u^{k,j} \times v^{k,j}$ where $u^{k,j} \stackrel{iid}{\sim} U[1-\delta, 1+\delta]$.
- ▶ 10,000 predictions for each instance and each value of $\delta \in \{0, 0.01, 0.1, \dots, 0.9, 0.99\}$.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Comparison against the clairvoyant optimum

Instances with 6 coflows and 6 ports (10,000 predictions)

(a) One instance

(b) 1,000 instances

<ロト < 同ト < 三ト < 三ト

Comparison against the clairvoyant Sincronia

100 instances with 10 ports and 15 or 30 coflows (10,000) predictions)

Solace Seminar, October 12th, 2023

Combining Sincronia with predictions and RR

200 instances with 6 ports and 6 coflows (20,000 predictions)

Max and average values of $\frac{\lambda SIN_{pred} + (1-\lambda)RR}{SIN}$ for $\lambda = 0.95$ and $\lambda = 1.0$

Solace Seminar, October 12th, 2023

25 / 28

<ロト < 同ト < 三ト < 三ト

CONCLUSION

Solace Seminar, October 12th, 2023

Conclusion

Coflow scheduling with unreliable predictions on flow sizes

- Sincronia with predictions as inputs
 - Approximation ratio
 - ✓ Sincronia performs well even when feed with terrible predictions
- No clear benefits in combining Sincronia with predictions and a RR rate allocation
- Operating Sincronia with ML predictions could be an efficient solution in practical scenarios

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Questions?

Solace Seminar, October 12th, 2023

(ロ)、(型)、(E)、(E)、(E)、(O)へ(C)