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Reinforcement learning in MDP: framework

MDP M = (S,A, r ,P). Let L be a learning algorithm.

1. Observe L
MDP
S(t)

state S(t)

2. Pick action L
MDP
S(t)

pick

At ∈ A

3. Get feedback L
MDP
S(t+1)

state S(t + 1)

reward RLt
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Reinforcement learning in PO-MDPs

To go one step further: the state S(t) is not perfectly observed by the learner: PO-MDP.

In general solving a POMDP is P-space complete and learning is also hard (lower bounds on

the sample complexity are exponential).

One extensively studied case: games with hidden states (poker).

Another case (not studied): in/out systems seen as black boxes.
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Admission control in a queueing network

Control

λ

admit

reject

S − s jobs outside

Motivation: serverless plateforms with complex structure (Knative).
4 / 24



Problem setting

The problem is to learn the optimal admission control policy in the following setting.

Cost function:

the learner may choose to reject/admit jobs arriving in the network, with cost γreject for

each rejected job;

for every time unit in the system, each job induces a holding cost γhold (see

Borgs-2014);

the leaner takes decisions only relying on its observations up to time t.

What does the learner know?

The learner can observe the external events: arrivals and departures of jobs. This implies

at t, the total number of jobs in the network, st is known (partially observed state).

The learning algorithm knows T , learning horizon. This is not a strong requirement as

one can make the algorithm oblivious to T by using a classical doubling trick on T .
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Original MDP

System is modeled as a MDP Mo = (X o ,Ao ,Po , ro), with uniformization constant to see

the process in discrete time: U ≥ λ+
N∑
i=1

µoi .

The state space X o is the set of all tuples (x1, . . . , xN) given by the number of jobs xi
in each queue i .

The action space is Ao := {0, 1} where 0 stands for rejection and 1 for admission.
The transition matrix Po is constructed by using the routing matrix L, the arrival rate λ

and the service rates (µoi ).

Reward: ro(x, a) := rmax −
λγreject(1− a) + γholds

U
where s :=

N∑
i=1

xi .
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Norton equivalent queue

The input/output behavior of the network in its stationary regime is equivalent to a single

queue

Norton equivalent queueJackson network

Figure: Illustration of Norton Equivalence theorem.

Arrival rate: λ. Service rate: µ(s) (Throughput of the network with s jobs in total).
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Aggregated MDP

M = (S,A, r ,P).
The state space S = {0, . . . ,S}
The actions are the same as for the original MDP: A = Ao = {0, 1} (reject or accept).

The reward are also the same: r(s, a) = rmax −
λγreject(1− a) + γholds

U
Let π be a policy (a function from S → A) on M.

P(s ′ | s, π(s)) =
∑
x,|x|=s

∑
y,|y|=s ′

νo,π(x)

νπ(s)
Po(y | x, π(x)), (1)

where νπ(s) =
∑
x,|x|=s

νo,π(x) is the equivalent stationary measure. These probabilities

are also those for the Norton equivalent queue.
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Comparison between both MDPs

The original MDP Mo has a greater set of policies than the aggregated MDP M.

Therefore, go(Mo , π∗) ≥ g∗(M).
However, if we only consider the set Πosum of policies for M

o that take the same action in all

the states with the same total number of jobs, then optimal gains coincide.

max
π∈Πosum

go(Mo , π) = g∗(M).

As for learning when the full state is not observable, the best one can hope for is to learn

max
π∈Πosum

go(Mo , π), so we will consider the regret with respect to this gain, in the following.
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Regret

Definition (Regret)

The regret at time T of the learning algorithm L is

Reg(M,L,T ) := Tg∗(M)−
T∑
t=1

rt . (2)

Here, g∗(M) is the optimal gain in the aggregated MDP. The reward rt is the reward of the
state visited at time t under the current policy used by the learning algorithm.
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Learning algorithm: Main ideas

The total number of jobs (st)t≤T is not Markovian. Instead, consider {s1, . . . , sτnorton} .
If τnorton is larger than the mixing time of the MDP, then each subsequence

si , si+τnorton , si+2τnorton , . . . is “almost” independent and can be used for statistical

estimations.

We set a collection of τnorton learning algorithms L1, . . . ,Lτnorton , using resp. the
subsequence (si+kτnorton)k∈N of observations, called modules.
Each module Li behaves similarly as the classical optimistic algorithm. There are no
interactions between modules except for the number of visits that contributes to the

construction of the global confidence region.

However,

1. The modules L1, . . . ,Lτnorton are not independent of each other
2. For each learning module Li , its sequence of observations
si+τnorton , si+2τnorton , si+3τnorton , . . . is not really stationary and independent, but only

weakly correlated.
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UCRL-M

Algorithm 1: The UCRL-M algorithm.

1 while t ≤ T do
2 Initialize episode k with tk := t
3 Compute the confidence regionMk ;

4 Find a policy π̃k and an optimistic MDP M̃k ∈Mk s.t.

g(M̃k , π̃k) ≥ max
Mk∈Mk

max
π
g(Mk , π)−

δmax√
tk
;

5 Ramping phase (Φ): Iterate the MDP with policy π̃k for τnorton time-steps, discard
the observations and set t := t + τnorton.

6 Exploration: while V
(mt)
k (st , π̃k(st)) < max{1,N(mt)

tk
(st , π̃k(st))} do

7 Use action at = π̃k(st); collect r(st , at); move to t + 1;
8 end

9 end
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Confidence regionMk

∀(s, a),
∣∣∣r̃(s, a)− r̂ (mk (s,a))k (s, a)

∣∣∣ ≤ δmax

√√√√ 2 log (2Atk)

max
{
1,N

(mk (s,a))
tk

(s, a)
} ; (3)

∀(s, a),
∥∥∥p̃(· | s, a)− p̂(mk (s,a))k ( · | s, a)

∥∥∥
1
≤
√

8 log (2Atk)

max{1,N(mk (s,a))
tk

(s, a)}
, (4)

where mk(s, a) is the most frequent module at time tk under (s, a). This is the only
interaction between modules.
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Regret of UCRL-M

Theorem

Define κ := 228(γreject +
γhold
U

)
U

µ(1)
C1

(
1−

√
λ

µ(s0)

)−3
.

For the choice τnorton = 5
logT

log 1/ρ
, we have:

E [Reg(M,UCRL-M,T )] ≤ κ log (2T )
√
T log−1(1/ρ) + RLO, (5)

where RLO := O(T 1/4) is a lower order term of the regret.
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Time complexity of UCRL-M

Theorem

The time complexity of UCRL-M is O(KSτnorton + Ktevi + T ), where K is the number of
episodes and tevi the time complexity of extended value iteration. Furthermore,

E(K ) = O(logT ).

Proof. The expected number of episodes, EK = O(logT ) because of the doubling test used
to end the episodes. The time complexity of line 3 is O(KSτnorton). The complexity of line 4
is O(Ktevi). The complexity of line 5 is O(Kτnorton). The complexity of lines 6-7 is
O(T − Kτnorton), the number of useful observations. As for the expected number of
episodes, EK = O(logT ) because of the doubling trick used to end the episodes.
The number of useful samples (excluding the ramping phases) is T − Kτnorton, and each
module uses

T − Kτnorton
τnorton

samples.

The complexity barely depends on τnorton or tevi (one per episode) since K is small w.r.t. T .
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Controlling the convergence rate ρ

The efficiency of UCRL-M is critically based on controlling τnorton and ρ. In particular, the

regret of UCRL-M depends on W := log−1/2(1/ρ).
Also τnorton is defined as τnorton := 5 logT/ log(1/ρ). where ρ is such that

max
π

sup
x0∈S

∥∥Po,πx0 (xt = ·)− νo(π)
∥∥
TV
≤ Cρt ∀t > 0. (6)

Relations with mixing and coupling times:

Let d(t) := sup
x0∈S
∥Px0(xt = ·)− ν∥TV . The mixing time is tmix := min{t : d(t) ≤ 1/4}.

A classical bound is ρ ≤
1

2t
−1
mix

. This implies W ≤
√
tmix log(2).

The coupling time τx ,y := min{t : Xt = Yt}, with Xt and Yt coupled and start at X0 = x
and Y0 = y resp. Then, d(t) ≤ max

x ,y
P(τx ,y > t). Using Markov inequality,

tmix ≤ 4max
x ,y
E[τx ,y ]. (7)
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Acyclic networks

The policy where the coupling time is the largest is when all jobs are admitted. The coupling

time is upper bounded by the coupling in an open network where all the N queues have

buffers bounded by S . In this case, the coupling time has been studied in Dopper-2006,

where the following result is proved

max
x ,y
E[τx ,y ] ≤

N∑
i=1

U2

(λoi + µ
o
i )(µ

o
i − λoi )

S , (8)

where U is the uniformization constant and (λi)i≤N is the solution of the traffic equations.
Therfore,

W ≤ κ0
√
NS ,

where κ0 is a constant: κ0 = max
i

N∑
i=1

U

λoi + µ
o
i

.
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Hyperstable networks

A network is called hyperstable if for each queue i ,
∑
j

Ljiµ
o
j + L0iλ < µ

o
i .

The policy under which the coupling time is the largest is when all jobs are admitted. Under

this policy, the coupling time is upper bounded by the coupling in an open network where all

the N queues have buffers bounded by S .

Coupling times of hyperstable networks with finite buffer queues have been studied in

Anselmi-Gaujal-2014:

max
x ,y
E[τx ,y ] ≤ κ2N2S

N∑
i=1

λoi
µoi − λoi

, (9)

where κ2 is a constant. This induces a similar bound on the term W in the regret:

W ≤ κ3N
√
S ,

where κ3 is yet another constant.
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Making the algorithm oblivious to ρ

UCRL-M uses τnorton = 5 logT/ log(1/ρ) modules.
This implies an a priori knowledge of ρ, (or at least an upper bound) of the network being

learned.

UCRL-M can be made oblivious to ρ by using τnorton ≥ 5 logT/ log ρ−1 for any large enough
T .

For example, one can chose τnorton := log2(T ). This patch adds a multiplicative log(T )
term in the asymptotic bound of the regret.
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Numerical experiments

Controller

1/n

λ

S − s jobs outside

reject

1/n

1/n

p/n

1− p

admit

This multi-tier structure is common in empirical studies of computer systems and is the

default architecture of web applications deployed on Amazon Elastic Compute Cloud (EC2).

20 / 24



Regret scaling with S
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The number of queues n (and the number of jobs S) scales multiplicatively while the regret

is increasing in log(S). Knowing that the dependency in S of the regret bound mainly comes
from ρ, this is much slower than the square root bounds given for acyclic and hyperstable

networks.
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Optimal admission
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Optimal thresholds

The optimal threshold scales linearly with N.
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Regret scaling with the number of modules, τnorton.
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The modules do not seem to bring any practical upside because the regret is almost

perfectly linear in the number of modules.
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That’s all folks!
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