Scaling limits of graph Laplacians

Ernesto Garcia
LAAS - CNRS
01/02/2024

Plan

(1) Introduction
(2) Random geometric graphs: scaling limit in the classical setting
(3) Scaling limits of GGL

Definition/Notation

A weighted graph will be $G=(V, w)$ where:

- $V=\left\{x_{1}, \ldots, x_{n}\right\}$ is the set of nodes and
- $w: V \times V \rightarrow[0,+\infty)$ is some positive symmetric function and W is the (symmetric) matrix $(w(x, y))_{x, y \in V} \in \mathbb{R}^{n \times n}$.
- We take the set of edges E to be the set of pairs of nodes $\left(x_{i}, x_{j}\right), i \neq j$ such that $w\left(x_{i}, x_{j}\right)>0$.
- Most of the time will assume that the graph in question is connected.

Definition/Notation

The (out-)degree of a vertex $x \in V$ is

$$
d(x)=\sum_{y \in V} w(x, y)
$$

the degree matrix is $D=\operatorname{diag}\left(d\left(x_{1}\right), \ldots, d\left(x_{n}\right)\right) \in \mathbb{R}^{n \times n}$. Also, for any set of nodes $A \subset V$, its volume is the sum of the degrees of nodes in A :

$$
\operatorname{vol}(A)=\sum_{x \in A} d(x)
$$

Graph cutting problem

Problem
 Provide a partition of V into k (predefined or not) subsets using W as a similarity matrix (large $w(x, y)$ implies x, y "similar" or "close" to each other).

Simple random walk on a weighted graph

Definition/Notation

Let P denote the row stochastic matrix $D^{-1} W$. Its entries are given by $p(x, y)=\frac{w(x, y)}{d(x)}, x, y \in V$.

Proposition

In the symmetric case the matrix P has stationary measure $\pi_{P}=\frac{1}{\operatorname{vol}(V)}\left(d\left(x_{1}\right), \ldots, d\left(x_{n}\right)\right)$, that is:

$$
\pi_{P} \cdot P=\pi_{P}
$$

Moreover, they generate a reversible Markov chain, i.e:

$$
\pi_{P}(x) p(x, y)=\pi_{P}(y) p(y, x), x, y \in V
$$

Definition

The inner product on $L^{2}(V)$ induced by π_{P} is

$$
\langle f, g\rangle_{\pi_{P}}=\sum_{x \in V} \pi_{P}(x) f(x) g(x)
$$

for $f, g: V \rightarrow \mathbb{R}$.

Corollary

Reversibility is equivalent to P being self-adjoint, as an operator on $L^{2}(V)$, for $\langle,\rangle_{\pi_{P}}$:

$$
\langle P f, g\rangle_{\pi_{P}}=\langle f, P g\rangle_{\pi_{P}}, \forall f, g: V \rightarrow \mathbb{R}
$$

Hence, if the weights are symmetric, P is diagonalizable over \mathbb{R}.

Graph Laplacians

Definition

The graph Laplacians we are interested in are the following $n \times n$ matrices:

- unnormalized graph Laplacian:

$$
L=D-W ;
$$

- random walk graph Laplacian:

$$
L_{r w}=D^{-1} L=I-D^{-1} W=I-P
$$

Main properties

Proposition

The following properties hold (under symmetry assumption):

- For any function $f: V \rightarrow \mathbb{R}$ we have:

$$
\langle f, L f\rangle=\sum_{x, y \in V} w(x, y)(f(y)-f(x))^{2} .
$$

- L is a positive semi-definite, symmetric matrix.
- 0 is an eigenvalue of L and its multiplicity is equal to the number of connected components of the graph.

Proposition

Since P is diagonalizable so is $L_{r w}$ and its spectrum lies in $[0,2)$. The eigendecomposition of $L_{r w}$ is central in some balanced graph-cut problems ([vL07]).

Random geometric graphs

Let D be some precompact domain in \mathbb{R}^{d} and $p: D \rightarrow \mathbb{R}$ some probability density function on D. Consider n independent samples $V_{n}=\left\{x_{1}, \ldots, x_{n}\right\}$ with distribution p. For each n we may build weighted graphs in several ways. Some examples are:

- gaussian weights.
- ε-graph, where we take $\varepsilon_{n} \rightarrow 0$ and connect nodes x and y if $\|x-y\|<\varepsilon_{n}$ with weight one and zero otherwise.
- knn-graph: for each n we take $k_{n} \in \mathbb{N}$ and put a unit-weight edge from each vertex x to each of its k_{n} nearest neighbors: for each vertex x let

$$
\varepsilon_{n}(x)=\inf \left\{r>0:\left|V_{n} \cap B(x, r)\right| \geq k_{n}\right\}
$$

and connect x to y with weight one if $\|x-y\| \leq \varepsilon_{n}(x)$ and zero otherwise.

Scaling limit in the classical ε-graph

Proposition

Let $x \in D \subset \mathbb{R}^{d}, f: D \rightarrow \mathbb{R}$ be twice continuously differentiable. For each n, the $n-t h \varepsilon$-graph Laplacian of f at x is given by

$$
L_{n} f(x)=\frac{1}{d_{n}(x)} \sum_{y \in V_{n}} \mathbb{1}\left(\|y-x\|<\epsilon_{n}\right)(f(y)-f(x)) .
$$

Assume the following:
(1) p is continuously differentiable and strictly positive in D,
(2) $\varepsilon_{n}=\left(n^{-1} \log n\right)^{\frac{1}{d+\alpha}}$ for some $\alpha>0$.

Then with probability one:

$$
\lim _{n} \frac{c_{d}}{\varepsilon_{n}^{2}} L_{n} f(x)=\Delta f(x)+\langle\nabla \log p(x), \nabla f(x)\rangle
$$

Sketch of proof for ε-graphs

Proof.

(1) Step 1: Compute expectation and Taylor expand the integrands:

$$
\begin{aligned}
\mathbb{E} L_{n} f(x) & =\frac{\int_{B\left(x, \varepsilon_{n}\right)}(f(y)-f(x)) p(y) d y}{\int_{B\left(x, \varepsilon_{n}\right)} p(y) d y} \\
& =\frac{\varepsilon_{n}^{2}}{c_{d}}\left(\frac{p(x) \Delta f(x)+\langle\nabla \log p(x), \nabla f(x)\rangle+o\left(\varepsilon_{n}^{2}\right)}{p(x)+O\left(\varepsilon_{n}^{2}\right)}\right)
\end{aligned}
$$

(2) Step 2: Use some concentration inequality (such as Hoeffding or Bernstein) to obtain exponential upper bounds on

$$
\mathbb{P}\left(\frac{c_{d}}{\varepsilon_{n}^{2}}\left|L_{n} f(x)-\mathbb{E} L_{n} f(x)\right|>\delta\right) .
$$

Remark

The above proof makes use of the fact that ε_{n} is not a function of the sample $\left\{x_{1}, \ldots, x_{n}\right\}$.

Generalized graph Laplacian and its scaling limit

Definition ([SJK22])

Let $G=(V, W)$ be a weighted graph, with W not necesarilly symmetric.
We also consider some finite measure $v: V \rightarrow \mathbb{R}$. The associated generalized random walk graph Laplacian (GGL) is the operator L^{v} on $L^{2}(V)$ given by:

$$
L^{v} f(x)=\frac{1}{\tilde{d}(x)} \sum_{y \in V}(v(x) p(x, y)+v(y) p(y, x))(f(y)-f(x))
$$

where as before

$$
p(x, y)=\frac{w(x, y)}{d(x)}, p(y, x)=\frac{w(y, x)}{d(y)}
$$

and

$$
\tilde{d}(x)=\sum_{y \in V} v(x) p(x, y)+v(y) p(y, x)=v(x)+(v P)(x)
$$

An intuition on GGL

Observation

We may take $\tilde{p}(x, y)$ to be $\frac{v(x) p(x, y)+v(y) p(y, x)}{\tilde{d}(x)}$ and write $L^{v} f$ more compactly as

$$
L^{v} f(x)=\sum_{y} \tilde{p}(x, y)(f(y)-f(x))
$$

$\tilde{p}(\cdot, \cdot)$ can be thought of as the transition kernel of the following Markov dynamics: At node x toss a fair coin. Now, to go to the node y :

- if heads pick the out-going edge $x \rightarrow y$ with probability $\frac{v(x) p(x, y)}{\tilde{d}(x)}$.
- If tails pick the in-going edge $y \rightarrow x$ with probability $\frac{v(y) p(y, x)}{\tilde{d}(x)}$.

Observation

Note that $\tilde{p}(x, y)=\tilde{p}(y, x)$ and hence L^{v} is self-adjoint for $\langle,\rangle_{v+v P \text {. }}$.

Setting for the main theorem

Remark

Let:
(1) p be a positive differentiable probability density on the domain $D \subset \mathbb{R}^{d}$
(2) for each $n \in \mathbb{N}$:
$V_{n}=\left\{x_{1}, \ldots, x_{n}\right\} n$ independent samples from p,
a finite measure v_{n} on V_{n},
a positive integer k_{n} : the number of neighbors to connect with at time n.
The knn-GGL associated to $\left(V_{n}, v_{n}, k_{n}\right)$ is given by

$$
L_{n} f(x)=\sum_{y \in V_{n}} \tilde{p}(x, y)(f(y)-f(x))
$$

where: $\tilde{p}(x, y)=\frac{v_{n}(x) \mathbb{1}\left(\|x-y\| \leq \varepsilon_{n}(x)\right)+v_{n}(y) \mathbb{1}\left(\|x-y\| \leq \varepsilon_{n}(y)\right)}{k_{n} \tilde{d}_{n}(x)}$.

Pointwise convergence of knn-GGL

Theorem (Puricelli, Jonckheere, G.)

Take $f \in C^{2}(D)$ and $x \in D$. If:

- $k_{n} \in \mathbb{N}$ is of order $\left(\frac{n}{\log (n)}\right)^{\alpha}$ for some $\alpha \in\left(\frac{2}{d+2}, 1\right)$,
- $c_{n}=c_{d}\left(\frac{n}{k_{n}}\right)^{2 / d}$ with c_{d} some positive constant depending only on the dimension d,
- $\left|\frac{\nu_{n}(x)}{k_{n}}-\nu(x)\right|=o\left(\left(\frac{n}{k_{n}}\right)^{1 / d}\right)$ for some positive $\nu \in C^{1}(D)$; then $\frac{c_{n}}{k_{n}} L_{n} f(x)$ converges almost surely to:

$$
\mathcal{L} f(x)=\frac{1}{p(x)^{2 / d}}\left(\Delta f(x)+\left\langle\nabla f(x), \nabla \log \left(\nu p^{1 / d}\right)(x)\right\rangle\right) .
$$

Main difficulties

Computing the expectation is not straightforward due to correlations involved in the ε_{n} 's. To overcome this we use the following estimates:

Proposition ([CGT22])

Let $\overline{\varepsilon_{n}}(x)=\left(\frac{k_{n}}{c_{d} p(x) n}\right)^{1 / d}$ There are constants $C, c>0$ such that
$\mathbb{P}\left(\left|\varepsilon_{n}(x)^{d}-\overline{\varepsilon_{n}}(x)^{d}\right| \geq C\left(\frac{k_{n}}{n}\right)^{2 / d} \overline{\varepsilon_{n}}(x)^{d}\right) \leq n \exp \left(-c\left(\frac{k_{n}}{n}\right)^{4 / d} k_{n}\right)$.
Using this we were able to prove that the limit is the same if we change $\varepsilon_{n}(y)$ for $\overline{\varepsilon_{n}}(y)$ for every node y and adapt the steps of the proof of the classic setting.

To do list

- Prove convergence of eigenvalues and eigenvectors.
- Compare spectral clustering from the continuous operator of the GGL.
- Examples and simulations with the limit operators.

Bibliography

Reff Calder and Nicolás García Trillos.
Improved spectral convergence rates for graph Laplacians on ε-graphs and k-NN graphs.
Appl. Comput. Harmon. Anal., 60:123-175, 2022.
围 Harry Sevi, Matthieu Jonckheere, and Argyris Kalogeratos. Generalized spectral clustering for directed and undirected graphs, 2022.

固 Ulrike von Luxburg.
A tutorial on spectral clustering.
Stat. Comput., 17(4):395-416, 2007.

Suggestions/ideas are most wecome. Thanks for your attention!

