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@ Introduction
© Random geometric graphs: scaling limit in the classical setting

© Scaling limits of GGL
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Definition/Notation
A weighted graph will be G = (V, w) where:
o V ={x1,...,Xn} is the set of nodes and

e w:V XV —|[0,+00) is some positive symmetric function and W is
the (symmetric) matrix (w(x,y))x,yev € R™".

o We take the set of edges E to be the set of pairs of nodes
(xi,xj), i # j such that w(x;, x;) > 0.

@ Most of the time will assume that the graph in question is connected.

(LAAS - CNRS) 01/02/2024 3/21



Definition /Notation
The (out-)degree of a vertex x € V is

d(x) = w(xy),

yev

the degree matrix is D = diag(d(x1),...,d(x,)) € R"*". Also, for any

set of nodes A C V, its volume js the sum of the degrees of nodes in A:

vol(A) = " d(x).

xEA
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Graph cutting problem

Problem

Provide a partition of V into k (predefined or not) subsets using W as a
similarity matrix (large w(x,y) implies x,y ‘“similar” or “close” to each
other).
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Simple random walk on a weighted graph

Definition/Notation

Let P denote the row stochastic matrix D~1W. Its entries are given by
pxy) =43 x,y e V.

Proposition
In the symmetric case the matrix P has stationary measure
TP = oy (d(x1), .-, d(xn)), that is:

wp - P =mp.

Moreover, they generate a reversible Markov chain, i.e:

mp(x)p(x,y) = mp(y)p(y. x), X,y € V.
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Definition
The inner product on L2(V) induced by 7p is
(f,8)mp = > TP(x)f(x)g(x)
xeV

for f,g:V —R.

Corollary

Reversibility is equivalent to P being self-adjoint, as an operator on L?(V),
for (,)np:
(Pf,8)np = (f,Pg)rp, Vf,g: V= R.

Hence, if the weights are symmetric, P is diagonalizable over R.
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Graph Laplacians

Definition
The graph Laplacians we are interested in are the following n X n matrices:

e unnormalized graph Laplacian:
L=D- W,

e random walk graph Laplacian:

Lyw=D1L=1-DW=1-P.
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Main properties

Proposition
The following properties hold (under symmetry assumption):

e For any function f : V — R we have:

(f,LF) = > wlx,y)(f(y) = f(x)*
x,yeV
o L is a positive semi-definite, symmetric matrix.

o 0 is an eigenvalue of L and its multiplicity is equal to the number of
connected components of the graph.

Proposition

Since P is diagonalizable so is L., and its spectrum lies in [0,2). The
eigendecomposition of L,,, is central in some balanced graph-cut problems

([vL07]).
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Random geometric graphs

Let D be some precompact domain in R? and p : D — R some probability
density function on D. Consider n independent samples V,, = {x1,...,xn}
with distribution p. For each n we may build weighted graphs in several
ways. Some examples are:
@ gaussian weights.
o c—graph, where we take €, — 0 and connect nodes x and y if
|[x — y|| < en with weight one and zero otherwise.
@ knn—graph: for each n we take k, € N and put a unit-weight edge
from each vertex x to each of its k, nearest neighbors: for each
vertex x let

en(x)=inf{r >0: |V,NB(x,r)| > kn}

and connect x to y with weight one if ||x — y|| < e,(x) and zero
otherwise.
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Scaling limit in the classical e—graph

Proposition

Let xe D Cc RY, f: D — R be twice continuously differentiable. For each
n, the n—th e—graph Laplacian of f at x is given by

Lof(x) = d}X) S 1(lly - xl| < en)(F(¥) — F(x)).

YeV,
Assume the following:
© p is continuously differentiable and strictly positive in D,
1
Q c, = (n"llogn)da for some a > 0.

Then with probability one:

im Z—gLnf(x) = Af(x) + (Vlog p(x), VF(x))
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Sketch of proof for e—graphs

Proof.
© Step 1: Compute expectation and Taylor expand the integrands:

 Jaeen(F) = £0x))p(y)dy
ELyf(x) = Jo(xen PY)AY

_& (P(X)Af(x) + (Vlog p(x), VF(x)) + 0(83))
Cd p(x) + O(e3)

@ Step 2: Use some concentration inequality (such as Hoeffding or
Bernstein) to obtain exponential upper bounds on

P (g‘%’ ILpf(x) — ELF(x)| > 5> :

Ol

v
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Remark

The above proof makes use of the fact that €,, is not a function of the
sample {x1,...,xn}.
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Generalized graph Laplacian and its scaling limit

Definition ([SJK22])

Let G = (V, W) be a weighted graph, with W not necesarilly symmetric.
We also consider some finite measure v : V — R. The associated
generalized random walk graph Laplacian (GGL) is the operator LY on
L?(V) given by:

L) = —— 3 (v(x)p(xy) + v(y)p(y, %) (F) — F(x)),

c7(x) yev

where as before

plxiy) = ) = 22

and

d(x) =Y v(x)p(x,y) + v(y)ply, x) = v(x) + (vP)(x).

yev
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An intuition on GGL

Observation

We may take p(x,y) to be VP FVIIPWX) and write LY more

d(x)
compactly as

pry - f(x))-

p(-,-) can be thought of as the transition kernel of the following Markov
dynamics: At node x toss a fair coin. Now, to go to the node y:

o if heads pick the out-going edge x — y with probability W

o If tails pick the in-going edge y — x with probability %

Observation
Note that p(x,y) = p(y, x) and hence LY is self-adjoint for {,),+p.
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Setting for the main theorem

Remark
Let:
© p be a positive differentiable probability density on the domain
D c RY,
@© for each n € N:
V, ={x1,...,x,} n independent samples from p,

a finite measure v, on V,,
a positive integer k,: the number of neighbors to connect with at time
n.

The knn—GGL associated to (V,, vy, k) is given by
Laf(x) = > Bl y)(F(y) — F(x))
YEV,

vo(QL(lIx=ylI<en(x))+va(Y) L{Ix=ylI<en(y))
kndn(x) :

where: p(x,y) =
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Pointwise convergence of knn—GGL

Theorem (Puricelli,Jonckheere,G.)

Take f € C?(D) and x € D. If:

«
@ k, € N is of order <@) for some o € (d%rz’ 1),

2/d
@ ch=cy4 (k_’:,) with cq4 some positive constant depending only on
the dimension d,

1/d
%ﬂx) — y(x)‘ =o0 <<k—’;> ) for some positive v € C1(D);

then 72 Lnf(x) converges almost surely to:

LF(x) = W (8F() + (VF(x), V log(vp™/4)(x)))
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Main difficulties

Computing the expectation is not straightforward due to correlations
involved in the g,'s. To overcome this we use the following estimates:

Proposition ([CGT22])
kn

1/d
—) There are constants C,c > 0 such that
cap(x)n

P (ran(x)d 59 2 C ("—;)z/ds—md) < e (—c ("—)/d k,,> .

Using this we were able to prove that the limit is the same if we change

en(y) for £,(y) for every node y and adapt the steps of the proof of the
classic setting.

Let 2,(x) = (
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@ Prove convergence of eigenvalues and eigenvectors.
@ Compare spectral clustering from the continuous operator of the GGL.

@ Examples and simulations with the limit operators.
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Suggestions/ideas are most wecome. Thanks for your attention!
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