
Scaling limits of graph Laplacians

Ernesto Garcia

LAAS - CNRS

01/02/2024

(LAAS - CNRS) 01/02/2024 1 / 21



Plan

1 Introduction

2 Random geometric graphs: scaling limit in the classical setting

3 Scaling limits of GGL

(LAAS - CNRS) 01/02/2024 2 / 21



Definition/Notation

A weighted graph will be G = (V ,w) where:

V = {x1, . . . , xn} is the set of nodes and

w : V ×V → [0,+∞) is some positive symmetric function and W is
the (symmetric) matrix (w(x , y))x ,y∈V ∈ Rn×n.

We take the set of edges E to be the set of pairs of nodes
(xi , xj), i ̸= j such that w(xi , xj) > 0.

Most of the time will assume that the graph in question is connected.
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Definition/Notation

The (out-)degree of a vertex x ∈ V is

d(x) =
∑
y∈V

w(x , y),

the degree matrix is D = diag(d(x1), . . . , d(xn)) ∈ Rn×n. Also, for any
set of nodes A ⊂ V , its volume is the sum of the degrees of nodes in A:

vol(A) =
∑
x∈A

d(x).

(LAAS - CNRS) 01/02/2024 4 / 21



Graph cutting problem

Problem

Provide a partition of V into k (predefined or not) subsets using W as a
similarity matrix (large w(x , y) implies x , y “similar” or “close” to each
other).
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Simple random walk on a weighted graph

Definition/Notation

Let P denote the row stochastic matrix D−1W . Its entries are given by
p(x , y) = w(x ,y)

d(x) , x , y ∈ V .

Proposition

In the symmetric case the matrix P has stationary measure
πP = 1

vol(V )(d(x1), . . . , d(xn)), that is:

πP · P = πP .

Moreover, they generate a reversible Markov chain, i.e:

πP(x)p(x , y) = πP(y)p(y , x), x , y ∈ V .
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Definition

The inner product on L2(V ) induced by πP is

⟨f , g⟩πP
=
∑
x∈V

πP(x)f (x)g(x)

for f , g : V → R.

Corollary

Reversibility is equivalent to P being self-adjoint, as an operator on L2(V ),
for ⟨, ⟩πP

:
⟨Pf , g⟩πP

= ⟨f ,Pg⟩πP
, ∀f , g : V → R.

Hence, if the weights are symmetric, P is diagonalizable over R.

(LAAS - CNRS) 01/02/2024 7 / 21



Graph Laplacians

Definition

The graph Laplacians we are interested in are the following n× n matrices:

unnormalized graph Laplacian:

L = D −W ;

random walk graph Laplacian:

Lrw = D−1L = I − D−1W = I − P.
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Main properties

Proposition

The following properties hold (under symmetry assumption):

For any function f : V → R we have:

⟨f , Lf ⟩ =
∑

x ,y∈V
w(x , y)(f (y)− f (x))2.

L is a positive semi-definite, symmetric matrix.

0 is an eigenvalue of L and its multiplicity is equal to the number of
connected components of the graph.

Proposition

Since P is diagonalizable so is Lrw and its spectrum lies in [0, 2). The
eigendecomposition of Lrw is central in some balanced graph-cut problems
([vL07]).
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Random geometric graphs

Let D be some precompact domain in Rd and p : D → R some probability
density function on D. Consider n independent samples Vn = {x1, . . . , xn}
with distribution p. For each n we may build weighted graphs in several
ways. Some examples are:

gaussian weights.

ε−graph, where we take εn → 0 and connect nodes x and y if
||x − y || < εn with weight one and zero otherwise.

knn−graph: for each n we take kn ∈ N and put a unit-weight edge
from each vertex x to each of its kn nearest neighbors: for each
vertex x let

εn(x) = inf{r > 0 : |Vn ∩ B(x , r)| ≥ kn}

and connect x to y with weight one if ||x − y || ≤ εn(x) and zero
otherwise.
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Scaling limit in the classical ε−graph

Proposition

Let x ∈ D ⊂ Rd , f : D → R be twice continuously differentiable. For each
n, the n−th ε−graph Laplacian of f at x is given by

Lnf (x) =
1

dn(x)

∑
y∈Vn

1(||y − x || < ϵn)(f (y)− f (x)).

Assume the following:

1 p is continuously differentiable and strictly positive in D,

2 εn = (n−1 log n)
1

d+α for some α > 0.

Then with probability one:

lim
n

cd
ε2n

Lnf (x) = ∆f (x) + ⟨∇ log p(x),∇f (x)⟩
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Sketch of proof for ε−graphs

Proof.
1 Step 1: Compute expectation and Taylor expand the integrands:

ELnf (x) =

∫
B(x ,εn)

(f (y)− f (x))p(y)dy∫
B(x ,εn)

p(y)dy

=
ε2n
cd

(
p(x)∆f (x) + ⟨∇ log p(x),∇f (x)⟩+ o(ε2n)

p(x) + O(ε2n)

)
2 Step 2: Use some concentration inequality (such as Hoeffding or

Bernstein) to obtain exponential upper bounds on

P
(
cd
ε2n

|Lnf (x)− ELnf (x)| > δ

)
.
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Remark

The above proof makes use of the fact that εn is not a function of the
sample {x1, . . . , xn}.
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Generalized graph Laplacian and its scaling limit

Definition ([SJK22])

Let G = (V ,W ) be a weighted graph, with W not necesarilly symmetric.
We also consider some finite measure v : V → R. The associated
generalized random walk graph Laplacian (GGL) is the operator Lv on
L2(V ) given by:

Lv f (x) =
1

d̃(x)

∑
y∈V

(v(x)p(x , y) + v(y)p(y , x)) (f (y)− f (x)),

where as before

p(x , y) =
w(x , y)

d(x)
, p(y , x) =

w(y , x)

d(y)
;

and
d̃(x) =

∑
y∈V

v(x)p(x , y) + v(y)p(y , x) = v(x) + (vP)(x).
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An intuition on GGL

Observation

We may take p̃(x , y) to be v(x)p(x ,y)+v(y)p(y ,x)

d̃(x)
and write Lv f more

compactly as

Lv f (x) =
∑
y

p̃(x , y)(f (y)− f (x)).

p̃(·, ·) can be thought of as the transition kernel of the following Markov
dynamics: At node x toss a fair coin. Now, to go to the node y :

if heads pick the out-going edge x → y with probability v(x)p(x ,y)

d̃(x)
.

If tails pick the in-going edge y → x with probability v(y)p(y ,x)

d̃(x)
.

Observation

Note that p̃(x , y) = p̃(y , x) and hence Lv is self-adjoint for ⟨, ⟩v+vP .
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Setting for the main theorem

Remark

Let:

1 p be a positive differentiable probability density on the domain
D ⊂ Rd ,

2 for each n ∈ N:
▶ Vn = {x1, . . . , xn} n independent samples from p,
▶ a finite measure vn on Vn,
▶ a positive integer kn: the number of neighbors to connect with at time

n.

The knn−GGL associated to (Vn, vn, kn) is given by

Lnf (x) =
∑
y∈Vn

p̃(x , y)(f (y)− f (x))

where: p̃(x , y) = vn(x)1(||x−y ||≤εn(x))+vn(y)1(||x−y ||≤εn(y))

knd̃n(x)
.
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Pointwise convergence of knn−GGL

Theorem (Puricelli,Jonckheere,G.)

Take f ∈ C 2(D) and x ∈ D. If:

kn ∈ N is of order

(
n

log(n)

)α

for some α ∈
(

2
d+2 , 1

)
,

cn = cd

(
n
kn

)2/d
with cd some positive constant depending only on

the dimension d,∣∣∣νn(x)kn
− ν(x)

∣∣∣ = o

((
n
kn

)1/d)
for some positive ν ∈ C 1(D);

then cn
kn
Lnf (x) converges almost surely to:

Lf (x) = 1

p(x)2/d

(
∆f (x) + ⟨∇f (x),∇ log(νp1/d)(x)⟩

)
.
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Main difficulties

Computing the expectation is not straightforward due to correlations
involved in the εn’s. To overcome this we use the following estimates:

Proposition ([CGT22])

Let εn(x) =

(
kn

cdp(x)n

)1/d

There are constants C , c > 0 such that

P

(
|εn(x)d − εn(x)

d | ≥ C

(
kn
n

)2/d

εn(x)
d

)
≤ n exp

(
−c

(
kn
n

)4/d

kn

)
.

Using this we were able to prove that the limit is the same if we change
εn(y) for εn(y) for every node y and adapt the steps of the proof of the
classic setting.
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To do list

Prove convergence of eigenvalues and eigenvectors.

Compare spectral clustering from the continuous operator of the GGL.

Examples and simulations with the limit operators.
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Suggestions/ideas are most wecome. Thanks for your attention!
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