

Maximal displacement of a time-inhomogeneous N(T)-particles branching Brownian motion

Pascal Maillard (Université de Toulouse)

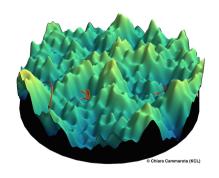
Overview

- 1. Introduction: optimization of random functions
- 2. Derrida's CREM and time-inhomogeneous BBM
- 3. Time-inhomogeneous N-BBM: near the hardness threshold

Introduction: optimization of random functions

Optimization of random functions

- Ubiquitous computational task: optimization of a highly non-convex function on high-dimensional space (machine learning, combinatorial optimization,...).
- Example: INDEPENDENT SET.
- Average-case complexity vs. worst-case complexity
- Theoretical framework: spin glasses in statistical mechanics



Spin glasses

Typical statistical mechanics model described by (Boltzmann, Gibbs):

- State space Σ
- Hamiltonian $H: \Sigma \to \mathbb{R}$
- Gibbs measure $\mu_{\beta}(\sigma) \propto e^{-\beta H(\sigma)}$, $\beta \geq 0$ (inverse temperature)

Example: Ising model (on graph G = (V, E), without magnetic field):

$$\Sigma = \{-1, 1\}^{V}, H(\sigma) = -\sum_{v \sim w} \sigma_{v} \sigma_{w}$$

Spin glass: the Hamiltonian H is itself random.

Example: (Ising) p-spin model ($p \ge 2$, without magnetic field):

$$\Sigma_n = \{-1,1\}^n, H_n(\sigma) = n^{-\frac{p-1}{2}} \sum_{i_1,\dots,i_p=1}^n J_{i_1,\dots,i_p} \sigma_{i_1} \cdots \sigma_{i_p},$$

where $J_{i_1,...,i_n}$ are iid standard Gaussian random variables.

Parisi measure and Parisi ultrametricity

Overlap between
$$\sigma, \sigma' \in \Sigma_n$$
: $R(\sigma, \sigma') = \frac{1}{n} \langle \sigma, \sigma' \rangle = \frac{1}{n} \sum_{i=1}^n \sigma_i \sigma_i' \in [-1, 1]$.

Mean overlap measure:

$$u_{eta, \mathsf{n}}(extsf{d}t) = \mathbb{E}\left[\sum_{\sigma, \sigma' \in \Sigma_n} \mathbf{1}_{(R(\sigma, \sigma') \in extsf{d}t)} \mu_{eta, \mathsf{n}}(\sigma) \mu_{eta, \mathsf{n}}(\sigma')
ight], \quad t \in \mathbb{R}.$$

Parisi measure: $\nu_{\beta} := \lim_{n \to \infty} \nu_{\beta,n}$.

Parisi ultrametricity (Parisi 1980's)

Emerging hierarchical structure whose statistics are completely determined (in the limit) by the Parisi measure ν_{β} .

Optimization algorithms, overlap gap property

Basic question: is it possible to find an approximate ground state, i.e., for a given $\varepsilon > 0$, to find a state $\sigma \in \Sigma_n$ such that

$$\left|\frac{H_n(\sigma)}{\min_{\sigma' \in \Sigma_n} H_n(\sigma')} - 1\right| \le \varepsilon,$$

in a time polynomial in n, with high probability?

Folklore conjecture (Gamarnik 21) for a wide class of models: Possible if (and only if) the overlap gap property does not hold. Proved for *p*-spin models and wide classes of algorithms Subag 21, Montanari 21, Gamarnik-Jagannath 21, Sellke 21,...

Overlap gap property

We say that the model exhibits the overlap gap property (OGP), if the support of the Parisi measure ν_{β} is *not* an interval for sufficiently large β .

Derrida's CREM and time-inhomogeneous BBM

Derrida's continuous random energy model

The continuous random energy model (CREM) Derrida 1985, Bovier-Kurkova 2004

- a certain Gaussian field indexed by a tree
- a spin glass model with explicit hierarchical structure
- amenable to quite explicit (asymptotic) analysis

Focus of today's talk: Intrinsic barriers for the efficiency of algorithms for optimizing the CREM Hamiltonian.

joint work with:

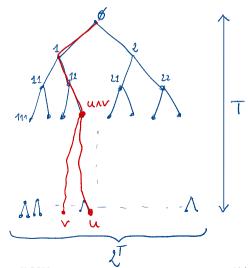
Louigi Addario-Berry

Alexandre Legrand

Continuous random energy model (CREM)

- $T \in \mathbb{N}$ (large)
- \mathbb{T}_T : rooted binary tree of depth T
- $(X_u)_{u \in \mathbb{T}_\tau}$: centered Gaussian field
- $A: [0,1] \rightarrow [0,1]$ non-decreasing, A(0) = 0, A(1) = 1
- $|u| = \operatorname{dist}(\emptyset, u)$
- $u \wedge v$: most recent common ancestor of u and v
- Covariance matrix:

$$\operatorname{Cov}(X_u, X_v) = T \cdot A\left(\frac{|u \wedge v|}{T}\right)$$



Time-inhomogeneous branching Brownian motion

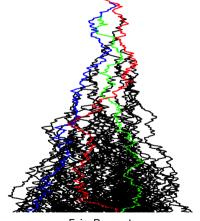
Continuous-time version of CREM. Parameters:

- T > 0 (large)
- $\sigma^2: [0,1] \to \mathbb{R}_+$

The time-inhomogeneous branching Brownian motion (BBM) is a particle system where particles

- diffuse according to independent (time-inhomogeneous) Brownian motions, sped up by a factor $\sigma^2(t/T)$ at time t
- split into two particles at (constant) rate 1/2

Essentially equivalent to CREM with $A(t) = \int_0^t \sigma^2(s) ds$.



Eric Brunet

Optimization problem

Known (Bovier-Kurkova 2004): First order of ground state of CREM (here, maximum instead of minimum):

$$\lim_{N\to\infty}\frac{1}{T}\max_{|u|=T}X_u=\sqrt{2\log 2}\int_0^1\sqrt{\hat{a}(t)}\,dt,$$

where \hat{a} : left-derivative of \hat{A} , the concave hull of A.

Optimization problem

Given x>0, is it possible to find vertices u with $X_u \geq xT$ within a time of order poly(T) with high probability? In particular, is there a poly(T)-time algorithm which finds an approximate ground state, i.e. a vertex u with $X_u \geq (1-\varepsilon)\sqrt{2\log 2} \int_0^1 \sqrt{\hat{a}(t)} \, dt \times T$, for every $\varepsilon>0$?

Remark: The related problem of approximately sampling the Gibbs measure was treated in the thesis of Fu-Hsuan Ho.

Algorithmic model

An algorithm is a random sequence of vertices $(v(n))_{n\geq 1}$, such that v(n+1) depends only on

- v(1), ..., v(n)
- $X_{v(1)},\ldots,X_{v(n)}$
- possibly some additional randomness (e.g., U_1, \ldots, U_{n+1} , where $(U_n)_{n \geq 1}$ is a sequence of iid uniformly distributed r.v., independent of $(X_u)_{u \in \mathbb{T}_N}$)

In other words, $v(n)_{n\geq 1}$ is a predictable process w.r.t. the filtration

$$\mathscr{F}_n = \sigma\left(\mathbf{v}(1), \dots, \mathbf{v}(n), X_{\mathbf{v}(1)}, \dots, X_{\mathbf{v}(n)}, U_1, \dots, U_{n+1}\right).$$

A stopping time τ is in this context also called the running time of the algorithm. The output of the algorithm is the vertex $v(\tau)$.

Optimization problem: threshold

 $A(t) = \int_0^t a(s) ds$, with a Riemann-integrable.

Define $x_* = \sqrt{2 \log 2} \int_0^1 \sqrt{a(t)} dt$ (algorithmic hardness threshold).

Theorem (Addario-Berry-M. 2021)

- 1. For $x < x_*$, there exists an algorithm with O(T) runtime, which finds a vertex u with $X_u \ge xT$ with high probability.
- 2. For $x > x_*$ every algorithm, which finds a vertex u with $X_u \ge xT$, has runtime at least $e^{\gamma T}$ with high probability, for some $\gamma = \gamma(x) > 0$.

Corollary

One can approximate the ground state in a time poly(T) if and only if A is concave.

Threshold and overlap gap property

Corollary

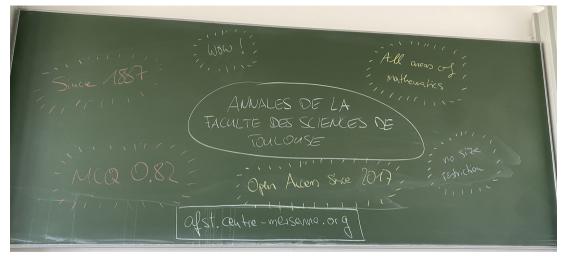
One can approximate the ground state in a time poly(T) if and only if A is concave.

Known (Bovier-Kurkova 2004-07): Support of Parisi measure (for sufficiently large β) is the set of extremal points of the concave hull of A. Hence, we have the equivalence:

no overlap gap \Leftrightarrow A strictly concave

Hence, we confirm the fact that the overlap gap property is necessary and sufficient for hardness of approximating the ground state, except for boundary cases.

Time-inhomogeneous *N*-BBM: near the hardness threshold



https://afst.centre-mersenne.org/

Optimization problem: near the threshold

Q: what happens near the threshold x_* ? ("phase transition")

Proposed algorithm to probe this: beam-search of beam width N = N(T):

- follow (at most) N paths of vertices down the tree
- at every step, paths split into two, only keep the *N* paths with highest (terminal) value, discard the others.

Complexity: $N \times T$.

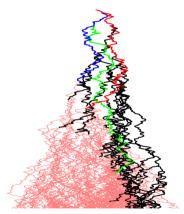
Interesting regime: $\log T \ll \log N \ll T$ (transition from polynomial to exponential complexity).

Time-inhomogeneous N-BBM

Time-inhomogeneous N-particle branching Brownian motion (N-BBM):

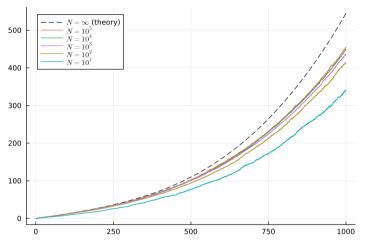
- particle system evolving in continuous time as follows:
- particles diffuse according to independent (time-inhomogeneous) Brownian motions, sped up by a factor $\sigma^2(t/T)$ at time t
- particles split, or "branch" into two particles at (constant) rate 1/2
- at every branching event, only keep N particles at highest positions

 M_T : maximum position at time T.



Fric Brunet

IAAS



Running maximum of simulations of time-inhomogeneous N-BBM with varying N. Parameters: $T=1000,\,\sigma(t)=0.125+t^2.$

Time-inhomogeneous N-BBM: main result

Assume σ^2 smooth, bounded away from 0 and ∞ . Set $v := \int_0^1 \sigma(t) dt$.

Theorem (Legrand-M. (2024+))

1. (subcritical phase) $\log N \ll T^{1/3}$:

$$M_T = vT\left(1 - \frac{\pi^2}{2(\log N)^2}\right) + \cdots$$

2. (supercritical phase) $\log N \gg T^{1/3}$:

$$M_T = vT + \int_0^1 (\sigma'(t))^+ dt \times \log N + \cdots$$

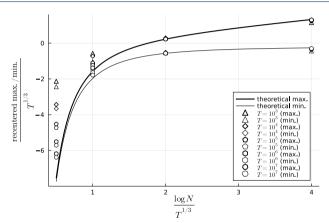
3. (critical phase) $\log N \approx T^{1/3}$:

$$M_T = vT + \Phi((\log N)/T^{1/3}; \sigma)T^{1/3} + \cdots,$$

for some explicit function $\Phi(\cdot; \sigma)$.

Same result holds also for CREM.

Numerical experiments



Numerical experiments on a discrete model (time-inhomogeneous *N*-particle branching random walk with Bernoulli increments) with varying *N*.

Subcritical phase ($\log N \ll T^{1/3}$)

Recall result:

$$M_T = vT \left(1 - \frac{\pi^2}{2(\log N)^2}\right) + \cdots$$

Reminiscent of Brunet-Derrida correction.

Theorem (Brunet-Derrida 1997, Bérard-Gouéré 2010)

Assume $\sigma^2 \equiv 1$ (homogeneous N-BBM). Then,

$$\lim_{T\to\infty}\frac{M_T}{T}=1-\frac{\pi^2}{2(\log N)^2}+\cdots.$$

Time-inhomogeneous *N*-BBM behaves like a concatenation of homogeneous *N*-BBM living each on a time scale of order o(T).

Supercritical phase ($\log N \gg T^{1/3}$)

Recall result:

$$M_T = vT + \int_0^1 (\sigma'(t))^+ dt \times \log N + \cdots$$

Why second term of order $\log N$?

- Particles in the N-BBM are atypical (large deviation event needed for a trajectory to survive)
- As a consequence, particle density decreases exponentially.
- When N large enough, expect a logarithmic increase in the maximum as a function of N.

Critical phase ($\log N \approx T^{1/3}$)

Recall result:

$$M_T = vT + \Phi((\log N)/T^{1/3}; \sigma) \times T^{1/3} + \cdots,$$

for some explicit functional $\Phi(\cdot; \sigma)$.

Why $T^{1/3}$? Match corrections in subcritical and supercritical phases:

$$\frac{T}{(\log N)^2} \asymp \log N \iff \log N \asymp T^{1/3}$$

Expression of $\Phi(\cdot; \sigma)$ involving a function Ψ defined in Mallein 2015:

$$\Phi(lpha;\sigma) = \int_0^1 rac{\sigma(oldsymbol{u})}{lpha^2} \Psi\Big(-lpha^3 rac{\sigma'(oldsymbol{u})}{\sigma(oldsymbol{u})}\Big) \mathrm{d}oldsymbol{u}, \quad \Psi(oldsymbol{q}) egin{dcases} \sim -oldsymbol{q}, & oldsymbol{q} > -\infty \ = -rac{\pi^2}{2}, & oldsymbol{q} = 0 \ \sim -rac{a_1oldsymbol{q}^{2/3}}{2^{1/3}}, & oldsymbol{q} > +\infty \end{cases},$$

where $-a_1 = -2.33811...$ is the largest root of the Airy function Ai.

Proof methods

- 1. Comparison of the *N*-BBM with BBM killed outside some well-chosen space-time tube ("barrier method"), over time scale *T* (critical, supercritical phases) or over a smaller time scale (subcritical phase)
- 2. Estimates on number of particles staying inside such tubes through first- and second moment estimates

Techniques classical in branching processes by now, but still proof quite technical. Moment estimates make use of results from Mallein 2015.

 $T^{1/3}$ scaling appears in many articles involving extremal particles of branching Brownian motion/branching random walks, e.g. Kesten 1978, Aldous 1998, Pemantle 2009, Fang-Zeitouni 2010, Faraud-Hu-Shi 2012, Jaffuel 2012, Mallein 2015, M.-Zeitouni 2016,... But it appears to our knowledge here for the first time for non-extremal particles.

Conclusion

- We have introduced a beam search algorithm for the CREM and a continuous-time counterpart.
- We have rigorously studied the performance of the algorithm when T and the beam width N are large
- Critical phase: $\log N \asymp T^{1/3}$. Below this critical phase, the gain in the performance when increasing the beam width is notable, above the critical phase it becomes negligible (logarithmic increase in N)

Open problems:

- Prove algorithmic lower bound for a wide class of algorithms
- Study similar behavior in "true" models (spin glasses, combinatorial optimization....)

Thank you for your attention!