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1. Optimization problem

Model

Consider a portfolio with assets

Z = (Z1, · · · ,Zm),

where Zi =
Ai (T )
Ai (0)

− 1 relative return at �xed time horizon.

An allocation strategy is a vector u = (u1, · · · , um) ∈ ∆m such that

0 ≤ ui ≤ 1,
m∑
i=1

ui = 1

and is associated with a mean return

E(⟨Z , u⟩) =
m∑
i=1

uiE(Zi )
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1. Optimization problem

Model

What is the best way to allocate resources to optimize the mean

relative return at a �xed time horizon ?

E(⟨Z , u⟩) =
m∑
i=1

uiE(Zi )

• Without constrain, we choose the asset with maximal expected return.

• But this could lead to large losses between gains.

−→ Risk management constraint

SOLACE 21/03/24 3 / 42



1. Optimization problem

Risk management constraint

CV@R (conditional value at risk)
Fix α > 0, the quantile (or value at risk V@R) is

V@Rα(u) = sup{q ∈ R : P(⟨Z , u⟩ ≤ q) ≤ α},

and
CV@Rα(u) = E[−⟨Z , u⟩ | ⟨Z , u⟩ ≤ V@Rα(u)].

We choose α such that

• V@Rα(u) < 0.

• CV@Rα(u) ≥ 0.

Expected absolute value of
large losses.
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1. Optimization problem

Risk management constraint

CV@R (conditional value at risk)
Fix α > 0, the quantile (or value at risk V@R) is

V@Rα(u) = sup{q ∈ R : P(⟨Z , u⟩ ≤ q) ≤ α},

and
CV@Rα(u) = E[−⟨Z , u⟩ | ⟨Z , u⟩ ≤ V@Rα(u)].

We impose that

CV@Rα(u) ≤ M.
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1. Optimization problem

The optimization problem

PM := arg max
u∈∆m

{
m∑
i=1

uiE[Z i ] : CV@Rα(u) ≤ M

}

= arg min
u∈∆m

{
−

m∑
i=1

uiE[Zi ] : CV@Rα(u) ≤ M

}

Lagragian formulation of the optimization problem

Qλ := arg min
u∈∆m

{
−

m∑
i=1

uiE[Zi ] + λCV@Rα(u)

}
.
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1. Optimization problem

The optimization problem

PM = arg min
u∈∆m

{
−

m∑
i=1

uiE[Zi ] : CV@Rα(u) ≤ M

}

Proposition

For any feasible constraint M > 0, a solution u∗M exists to PM such that

∃λ⋆M > 0 u⋆M = arg min
u∈∆m

{
−

m∑
i=1

uiE[Si ] + λ⋆MCV@Rα(u)

}
.

Moreover, λ⋆M is a decreasing function of M.
Oppositely, any solution vλ of Qλ solves PM with M = CV@Rα(vλ).

[P. Krokhmal, J. Palmquist, and S. Uryasev. Portfolio optimization with

conditional value-at-risk objective and constraints. (2001)]
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1. Optimization problem

Convex representation of the CV@R

Qλ = arg min
u∈∆m

{
−

m∑
i=1

uiE[Zi ] + λCV@Rα(u)

}
.

As introduced by Rockafeller and Uryasev (2000),

CV@Rα(u) = argmin
θ∈R

ψα(u, θ),

= argmin
θ∈R

θ +
1

1− α
E [⌊⟨Z , u⟩ − θ⌋+] ,

where ⌊x⌋+ = max(0, x).

ψα is the convex coercive Lipschitz continuous and di�erentiable function.

SOLACE 21/03/24 8 / 42



1. Optimization problem

Convex representation of the CV@R

Qλ = arg min
u∈∆m

{
−

m∑
i=1

uiE[Zi ] + λCV@Rα(u)

}
.

As introduced by Rockafeller and Uryasev (2000),

CV@Rα(u) = argmin
θ∈R

ψα(u, θ),

= argmin
θ∈R

θ +
1

1− α
E [⌊⟨Z , u⟩ − θ⌋+] ,

where ⌊x⌋+ = max(0, x).

ψα is the convex coercive Lipschitz continuous and di�erentiable function.

SOLACE 21/03/24 8 / 42



1. Optimization problem

Convex unconstrained problem

Qλ = arg min
(u,θ)∈∆m×R

{pλ(u, θ)} , (1)

where the key function pλ is de�ned by :

pλ(u, θ) = −
m∑
i=1

uiE[Zi ] + λ

{
θ +

1

1− α
E [⌊⟨Z , u⟩ − θ⌋+]

}
(2)

• The function pλ(u, θ) writes as an expectation, Robbins-Monro

stochastic algorithms are available,
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1. Optimization problem

Robbins Monro algorithms (1951)

Aim : Find y∗ such that h(y∗) = 0 when the function h(y) = E(H(y ,Z )).

Here, we search for (u, θ) such that ∇pλ(u, θ) = 0.

pλ(u, θ) = −
m∑
i=1

uiE[Zi ] + λ

{
θ +

1

1− α
E [⌊⟨Z , u⟩ − θ⌋+]

}

Assume (Zn)n≥1 is a sequence of i.i.d random variables, and (γn)n≥1 is a
sequence of step sizes such that∑

γn = +∞ and,
∑

γ2n <∞.

Then the Robbins Monro algorithm writes

yn+1 = yn − γnH(yn,Zn+1).
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1. Optimization problem

Optimization problem

Qλ = arg min
(u,θ)∈∆m×R

{pλ(u, θ)} ,

where the key function pλ is de�ned by :

pλ(u, θ) = −
m∑
i=1

uiE[Zi ] + λ

{
θ +

1

1− α
E [⌊⟨Z , u⟩ − θ⌋+]

}
• The function pλ(u, θ) writes as an expectation, Robbins-Monro

stochastic algorithms are available, but

→ the functions inside the expectation are not smooth.
sub-gradients techniques

→ we have only access to biaised simulation of the random variables
Z .
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1. Optimization problem

Optimization problem

Qλ = arg min
(u,θ)∈∆m×R

{pλ(u, θ)} ,

where the key function pλ is de�ned by :

pλ(u, θ) = −
m∑
i=1

uiE[Zi ] + λ

{
θ +

1

1− α
E [⌊⟨Z , u⟩ − θ⌋+]

}
• We optimize on u ∈ ∆m

→ either project the stochastic gradient descent
→ use a di�erent strategy that takes the geometry into account.

Stochastic mirror descent
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2. Stochastic biased mirror descent Deterministic mirror descent

Deterministic mirror descent

The mirror descent was introduced by A. Nemirovkij and D. Yudin (1983).

Main idea :

• avoid projection by changing the metric in the space

• choose a "metric" in which the mirror/proximal mapping is explicit.

A. Beck and M.Teboulle (2003), Mirror descent and nonlinear projected
subgradient methods for convex optimization,
G. Lan, A. Nemirovskij, and A. Shapiro. (2012.) Validation analysis of mirror
descent stochastic approximation method.

Z. Zhou, P. Mertikopoulos, N. Bambos, S. Boyd, and P. Glynn. (2017).

Stochastic mirror descent in variationally coherent optimization problems.
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2. Stochastic biased mirror descent Deterministic mirror descent

Deterministic miror descent

When we consider the question of minimizing a convex smooth f , the
gradient descent writes :

xk+1 = xk −
1

2ηk
∇f (xk),

it is equivalent to the proximal problem

xk+1 = argminx{⟨x ,∇f (xk)⟩+
1

2ηk
||x − xk ||2}

The mirror descent considers

xk+1 = argminx{⟨x ,∇f (xk)⟩+
1

ηk
D(x , xk)}

where D is a Bregman distance function. [A. Beck and M. Teboulle (2003)]
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2. Stochastic biased mirror descent Deterministic mirror descent

Bregman distance

We consider the strongly convex negative entropy on ∆m and the L2 norm
on R :

Φ(u, θ) =
m∑
i=1

ui log(ui ) +
θ2

2

The Bregman distance is de�ned as

DΦ(u, v) = Φ(u)− Φ(v)− ⟨∇Φ(v), u − v⟩.
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2. Stochastic biased mirror descent Deterministic mirror descent

Deterministic mirror descent

Let x = (u, θ), then the deterministic mirror descent writes

Xk+1 = arg min
x∈∆m×R

{
⟨∇pλ(Xk), x − Xk⟩+

1

ηk+1
DΦ(x ,Xk)

}
.

This minimization can be made explicit :

Xk+1 =

(
Uk+1

θk+1

)
with

 Uk+1 = Uke−ηk+1∂upλ(Uk ,θk )

∥Uke−ηk+1∂upλ(Uk ,θk )∥1

θk+1 = θk − ηk+1∂θpλ(U
k , θk)

,

where the �rst equation has to be understood within a m dimensional
vector structure.
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2. Stochastic biased mirror descent Deterministic mirror descent

Subgradient

Recall that

pλ(u, θ) = −
m∑
i=1

uiE[Zi ] + λ

{
θ +

1

1− α
E [⌊⟨Z , u⟩ − θ⌋+]

}

Subgradient

If f is a convex function, η is a sub-gradient of f in x0 if

∀x , f (x) ≥ f (x0) + ⟨η, x − x0⟩.

For f (x) = max(x , 0) we obtain

∂f (x) =


1 , if x > 0

0 , if x < 0

[0, 1] , if x = 0
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2. Stochastic biased mirror descent Deterministic mirror descent

Subgradient

Recall that

pλ(u, θ) = −
m∑
i=1

uiE[Zi ] + λ

{
θ +

1

1− α
E [⌊⟨Z , u⟩ − θ⌋+]

}

We will therefore choose

∂upλ(u, θ) = E(g1(Z , u, θ)), g1(Z , u, θ) = −Z +
λ

1− α
Z1⟨Z ,u⟩≥θ

and

∂θpλ(u, θ) = E(g2(Z , u, θ)), g2(Z , u, θ) = λ

[
1− 1

1− α
1⟨Z ,u⟩≥θ

]
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2. Stochastic biased mirror descent Deterministic mirror descent

Our algorithm

Data Step-size sequence (ηn)n≥0 and U0 ∈ R, θ0 ∈ R ; α ∈ (0, 1)
Results Two sequences : Xk = (Uk , θk)k≥0

for k = 0, . . . , do

Simulate the random variable Ẑ k+1

Compute a stochastic approximation ĝk+1 of ∇pλ(Uk , θk) with :
ĝk+1,1 = −Ẑ k+1 + λ

1−α Ẑ
k+11⟨Ẑ k+1,Uk ⟩≥θk

ĝk+1,2 = λ
[
1− 1

1−α1⟨Ẑ k+1,Uk ⟩≥θk

] .

Update the algorithm

Xk+1 = argminx∈∆m×R

{
⟨ĝk+1, x − Xk⟩+ 1

ηk+1
DΦ(x ,Xk)

}
using :

Xk+1 = (Uk+1, θk+1),

Uk+1 = Uke
−ηk+1 ĝk+1,1

∥Uke
−ηk+1 ĝk+1,1∥1

θk+1 = θk − ηk+1ĝk+1,2

.
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2. Stochastic biased mirror descent Biased simulations

A �rst recursion step

A key argument to study the algorithm is to write a recursion inequality on
Dϕ(x

∗,Xk).

Starting from

Xk+1 = arg min
x∈X

{
⟨ĝk+1, x − Xk⟩+

Dϕ(x ,Xk)

ηk+1

}
,

we can obtain

Dϕ(x ,Xk+1) ≤ Dϕ(x ,Xk) + η2k+1

[
Cα + ∥ĝk+1,1∥2

]
− ηk+1⟨ĝk+1,Xk − x⟩.
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2. Stochastic biased mirror descent Biased simulations

Drift term

ĝk+1 = ∇pλ(Xk) + (E[ĝk+1 | Fk ]−∇pλ(Xk)) + (ĝk+1 − E[ĝk+1 | Fk ])

= ∇pλ(Xk)− bk+1 +∆Mk+1,

bk+1 stands for the bias :

bk+1 := ∇pλ(Uk , θk)− E[ĝk+1 | Fk ]

=

(
E[Ẑ k+1 | Fk ]− E[Z ] + λ

1−α

(
E[Z1⟨Z ,Uk ⟩≥θk ]− E[Ẑ k+11⟨Ẑ k+1,Uk ⟩≥θk

| Fk ]
)

P(⟨Z ,Uk⟩ ≥ θk)− E[1⟨Ẑ k+1,Uk ⟩≥θk
|Fk ]

)
.
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2. Stochastic biased mirror descent Biased simulations

Assumptions on the biased simulations

The sequence (Ẑ k)k≥0 satis�es both :

W1(L(Ẑ k+1),L(Z )) ≤ δk+1,

where W1 stands for the Wasserstein-1 distance.

∀u ∈ ∆m, ∀θ ∈ R,∥∥∥E [⟨Z , u⟩1⟨Z ,u⟩≥θ − ⟨Ẑ k+1, u⟩1⟨Ẑ k+1,u⟩≥θ | Fk

]∥∥∥ ≤ υk+1.

We deduce that

E[∥bk+1∥] ≤ 2
√
δk+1 + δk+1 +

λ

1− α
υk+1.
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2. Stochastic biased mirror descent Results

Convergence

(Theorem - Almost sure convergence of the biased SMD)

Assume that
∑

k≥0 ηk+1 = +∞, and
∑

k≥0 η
2
k+1 < +∞, and that∑

k≥0

ηk+1(
√
δk+1 + υk+1) < +∞,

then the Cesaro average X̄ η
k de�ned by

X̄ η
k :=

( k∑
i=0

ηi

)−1
(

k∑
i=0

ηiXi

)
(3)

converges a.s. and
pλ(X̄

η
k ) −→ min(pλ) a.s.
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2. Stochastic biased mirror descent Results

Finite horizon controls

Dk
Φ = EDΦ(x

∗
λ,Xk).

Coming back to the recursion we can obtain

Dk
Φ ≤ D0

Φ

k∏
i=1

(1+ ai ) +

 k∑
j=1

bj∏j
i=1(1+ ai )

 k∏
i=1

(1+ ai ). (4)

where

D0
Φ ≤

(θ0 − V@Rα(u
⋆
λ))

2

2
+ logm := {∆0

Φ}2,
ak+1 = 2ηk+1

(
2
√
δk+1 + δk+1 +

λυk+1

1− α

)
bk+1 = C

(
η2k+1 + ηk+1

(
2
√
δk+1 + δk+1 +

λυk+1

1− α

)) .
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2. Stochastic biased mirror descent Results

Finite horizon controls

(Finite-time guarantees)

Recall that X̄ η
k :=

(∑k
i=0 ηi

)−1 (∑k
i=0 ηiXi

)
then for any n > 1,

E[pλ(X̄ η
n )]− pλ(x

⋆
λ) ≤

n−1∑
j=0

ηj+1

−1(
D0
Φ +

n−1∑
k=0

[
ak+1D

k
Φ + bk+1

])

where

ak+1 = 2ηk+1

(
2
√
δk+1 + δk+1 +

λυk+1

1− α

)
, bk+1 = C

(
η2k+1 + ak+1

)
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2. Stochastic biased mirror descent Results

SMD with a constant step-size sequence

Consider the step sequence

ηk+1 = η > 0, ∀ 0 ≤ k ≤ n.

We will also assume a constant upper bound of the bias in the simulation

2
√
δk+1 + δk+1 +

λυk+1

1− α
= ω > 0, ∀1 ≤ k ≤ n.

For a given n ∈ N, if (η, ω) are chosen such that

η =
∆0

Φ

2
√
n+1

and ω = 1√
n+1∆0

Φ

with {∆0
Φ}2 =

(θ0−V@Rα(u⋆λ))
2

2 + logm,

then there exists C > 0 large enough such that :

E
[
pλ

(
X̂ η
n

)]
− pλ(x

⋆
λ) ≤ C

|θ0 − V@Rα(u
⋆
λ)|+

√
logm√

n + 1
.
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3. Approximation of the portfolio Model

Portfolio model

The portfolio Z contains m = m′ + 1 assets

• a return Y obtained as the baseline short-term interest rate
Cox-Ingersoll-Ross process (rt)t≥0 with no drift,

• a family S = (S1, . . .Sm′
) of m′ = m− 1 geometric Brownian motions

that encode some risky assets in the portfolio.

The CIR short rate model depends on a triple (a, b, σ0)

drt = a(b − rt)dt + σ0
√
r tdB0(t), (5)

where (B0(t))t≥0 stands for a standard real Brownian motion.

• b stands for the long-time mean of the short rate

• a quanti�es the strength of the mean-reversion e�ect.

• σ0 is the volatility.
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3. Approximation of the portfolio Model

Portfolio model - 2

drt = a(b − rt)dt + σ0
√
r tdB0(t),

Then the portfolio Zt = (Yt ,S
1
t , · · · , Sm′

t ) writes

∀t ≥ 0

{
dYt = rtYtdt,

dS i
t = µiS

i
tdt + σiS

i
tdBi (t), ∀i ∈ {1, . . . ,m′},

(6)

where B = (B0,B1, . . . ,Bm′) refers to a multivariate Brownian motion with
correlated components with

E[Bi (t)Bj(t)] = ρi ,j t,

Assumptions on the portfolio parameters We assume that :

i) the CIR parameters satisfy ab > σ20 and a > 2
√
2σ0.

ii) the correlation matrix of the Brownian motions Σ in invertible.
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3. Approximation of the portfolio Strategy of approximation

Simulation of the portfolio

Geometric Brownian motion can be exactly simulated.

• Let W (t) = (W0(t),W1(t), . . . ,Wm′(t)) be independent standard
Brownian paths

• Cholesky decomposition :

LLT = Σ and B(t) = LW (t).

• Finally for i ∈ {1, · · ·m′}

S i
1 = S i

0 exp

((
µi −

(σi )
2

2

)
+ σiB

i
1

)
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3. Approximation of the portfolio Strategy of approximation

Simulation of the CIR

Main issues
drt = a(b − rt)dt + σ0

√
r tdB0(t),

Y (t) = Y0 exp

(∫ t

0
rsds

)
.

• Even if there exists method to simulate the CIR exactly, the integral
needs to be approximated.

• We need to choose an discretization scheme that allows the control of
the error in Z1⟨Z ,u⟩≥θ.
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3. Approximation of the portfolio Strategy of approximation

Simulation of the CIR

Discrete time grid (kh){1≤k≤N} sur [0, 1]

Drift implicit Euler scheme

r̂(k+1)h =


√
r̂kh +

σ0
2 ∆B

(k)
0

2(1+ ah
2 )

+

√√√√√(√r̂kh +
σ0
2 ∆B

(k)
0

)2
4(1+ ah

2 )
2

+
(4ab − σ20)h

8(1+ ah
2 )


2

.

[Alfonsi (2005), (2013), S. Dereich, A. Neuenkirch, and L. Szpruch (2012)]

The method derives from the SDE satis�ed by yt =
√
rt :

ŷ(k+1)h = ŷkh +

(
4ab − σ20
8ŷ(k+1)h

− a

2
ŷ(k+1)h

)
h +

σ0
2
∆B

(k)
0 ,

where ∆B
(k)
0 = B0((k + 1)h)− B0(kh).
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3. Approximation of the portfolio Strategy of approximation

Simulation of the CIR

Recall

Y1 = Y0 exp(

∫ 1

0
rsds)

We use Rieman integral approximation of
∫ 1
0 rsds :

Îh =
1

N

N∑
k=1

r̂kh

and de�ne

Ŷ
(h)
1 := Y0 exp(Îh) = Y0 exp

(
1

N

N∑
k=1

r̂kh

)
. (7)
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3. Approximation of the portfolio Strategy of approximation

Results on the approximation scheme

(Alfonsi (2013))

Assume 2ab > σ2 then for any p ∈ [1, 2ab
σ2

),(
E
[
max

0≤k≤N
|r̂kh − rrh|p

])1/p

≤ Kp

√
h

We need to control

∆h =

∫ 1

0
rsds −

1

N

N∑
k=1

r̂kh.

(Proposition)

Assume ab > σ20 and a > 2
√
2σ0, then

E
(
|∆h|2

)
≤ C

√
h E

(
eq|δh|

)
<∞ ∀q < 2
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3. Approximation of the portfolio Strategy of approximation

Results on the approximation scheme

We have constructed Ẑ1 = (Ŷ
(h)
1 , S1

1 , · · · Sm′
1 ) using a grid (kh){k≤N} on

[0, 1].

(Approximation results)

• A constant C exists (dependent on the CIR parameters) such that :

W1(L(Ẑ1),L(Z1)) = W1(L(Ŷ (h)
1 ),L(Y1)) ≤ C

√
h.

• For any ϵ > 0, there exists a constant Kϵ independent of h and m such
that :∥∥∥E [⟨Z1, u⟩1⟨Z1,u⟩≥θ − ⟨Ẑ1, u⟩1⟨Ẑ1,u⟩≥θ

]∥∥∥
2
≤ Kϵ

√
me

{σ+}2m2

4ϵ2 h
1
6
−ϵ.
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3. Approximation of the portfolio Results

SMD at �xed time horizon n

Recall that we assume

• a constant step-size sequence ηk = η for 1 ≤ k ≤ n

• a constant discretizaton step-size h

Then h should be chosen as :

h1/4 + h
1
6
−ϵ ∼ n−1/2,

which entails that we could choose a discretization step-size close to n−3.
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3. Approximation of the portfolio Results

SMD with decreasing step-size sequence

The second interesting case is choosing

ηk = k−α, α ∈ (
1

2
, 1] hk = h

(m)
0 k−β, β > 0.

This lead to

δk = k−
β
2 and vk = Kϵ

√
me

{σ+}2m2

4ϵ2 h−β( 1
6
−ϵ).

The condition for the convergence of the algorithm reads∑
k≥1

k−α
(
k−

β
4 + k−β( 1

6
−ϵ)
)
<∞,

which is equivalent to :

α+
β

6
> 1, with α ∈ (

1

2
, 1].
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3. Approximation of the portfolio Results

SMD with decreasing step-size sequence

The second interesting case is choosing

ηk = k−α, α ∈ (
1

2
, 1) hk = h

(m)
0 k−β, β > 0.

This lead to

δk = k−
β
2 and vk = Kϵ

√
me

{σ+}2m2

4ϵ2 k−β( 1
6
−ϵ).

In this case, we can obtain the �nite horizon controls

E
[
pλ

(
X̂ η
n

)]
− pλ(x

⋆
λ) ≲ nα−1D0

Φ + n−α∧β
6 .

Choosing α = 1/2 and β > 3 allows to recover the convergence rate in
√
n.
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3. Approximation of the portfolio Numerics
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3. Approximation of the portfolio Numerics

Simulated data

Figure � Time evolution of the return of the discretized trajectories associated to
the assets of the synthetic portfolio (CIR + GBM).
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3. Approximation of the portfolio Numerics

Simulated data

Figure � Composition of the optimal portfolio when λ increases. Left : 3 assets,
Right : 8 assets. ER and CV@R are indicated in the legend box of each sub�gure.
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3. Approximation of the portfolio Numerics
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• A. Alfonsi. Strong order one convergence of a drift implicit euler scheme :
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Thank you for your attention !
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