Portfolio optimization under CV@R constraint with stochastic mirror descent

Manon Costa

Institut de Mathématiques de Toulouse,
joint work with Sébastien Gadat (TSE, IUF) and Lorick Huang (INSA Toulouse).

Model

Consider a portfolio with assets

$$
Z=\left(Z_{1}, \cdots, Z_{m}\right)
$$

where $Z_{i}=\frac{A_{i}(T)}{A_{i}(0)}-1$ relative return at fixed time horizon.
An allocation strategy is a vector $u=\left(u_{1}, \cdots, u_{m}\right) \in \Delta_{m}$ such that

$$
0 \leq u_{i} \leq 1, \quad \sum_{i=1}^{m} u_{i}=1
$$

and is associated with a mean return

$$
\mathbb{E}(\langle Z, u\rangle)=\sum_{i=1}^{m} u_{i} \mathbb{E}\left(Z_{i}\right)
$$

Model

What is the best way to allocate resources to optimize the mean relative return at a fixed time horizon?

$$
\mathbb{E}(\langle Z, u\rangle)=\sum_{i=1}^{m} u_{i} \mathbb{E}\left(Z_{i}\right)
$$

- Without constrain, we choose the asset with maximal expected return.
- But this could lead to large losses between gains.
\longrightarrow Risk management constraint

Risk management constraint

CV@R (conditional value at risk)
Fix $\alpha>0$, the quantile (or value at risk $\mathrm{V} @ \mathrm{R}$) is

$$
V @ R_{\alpha}(u)=\sup \{q \in \mathbb{R}: \mathbb{P}(\langle Z, u\rangle \leq q) \leq \alpha\},
$$

and

$$
C V @ R_{\alpha}(u)=\mathbb{E}\left[-\langle Z, u\rangle \mid\langle Z, u\rangle \leq V @ R_{\alpha}(u)\right] .
$$

We choose α such that

- $V @ R_{\alpha}(u)<0$.
- $C V @ R_{\alpha}(u) \geq 0$.

Expected absolute value of large losses.

Risk management constraint

CV@R (conditional value at risk)
Fix $\alpha>0$, the quantile (or value at risk $\mathrm{V} @ \mathrm{R}$) is

$$
V @ R_{\alpha}(u)=\sup \{q \in \mathbb{R}: \mathbb{P}(\langle Z, u\rangle \leq q) \leq \alpha\},
$$

and

$$
C V @ R_{\alpha}(u)=\mathbb{E}\left[-\langle Z, u\rangle \mid\langle Z, u\rangle \leq V @ R_{\alpha}(u)\right] .
$$

We impose that

$$
C V @ R_{\alpha}(u) \leq M .
$$

(1) Optimization problem

(2) Stochastic biased mirror descent

- Deterministic mirror descent
- Biased simulations
- Results
(3) Approximation of the portfolio
- Model
- Strategy of approximation
- Results
- Numerics

The optimization problem

$$
\begin{aligned}
\mathcal{P}_{M} & :=\arg \max _{u \in \Delta_{m}}\left\{\sum_{i=1}^{m} u_{i} \mathbb{E}\left[Z^{i}\right]: \operatorname{CV} @ R_{\alpha}(u) \leq M\right\} \\
& =\arg \min _{u \in \Delta_{m}}\left\{-\sum_{i=1}^{m} u_{i} \mathbb{E}\left[Z_{i}\right]: C V @ R_{\alpha}(u) \leq M\right\}
\end{aligned}
$$

Lagragian formulation of the optimization problem

$$
\mathcal{Q}_{\lambda}:=\arg \min _{u \in \Delta_{m}}\left\{-\sum_{i=1}^{m} u_{i} \mathbb{E}\left[Z_{i}\right]+\lambda C V @ R_{\alpha}(u)\right\} .
$$

The optimization problem

$$
\mathcal{P}_{M}=\arg \min _{u \in \Delta_{m}}\left\{-\sum_{i=1}^{m} u_{i} \mathbb{E}\left[Z_{i}\right]: C V @ R_{\alpha}(u) \leq M\right\}
$$

Proposition

For any feasible constraint $M>0$, a solution u_{M}^{*} exists to \mathcal{P}_{M} such that

$$
\exists \lambda_{M}^{\star}>0 \quad u_{M}^{\star}=\arg \min _{u \in \Delta_{m}}\left\{-\sum_{i=1}^{m} u_{i} \mathbb{E}\left[S_{i}\right]+\lambda_{M}^{\star} C V @ R_{\alpha}(u)\right\} .
$$

Moreover, λ_{M}^{\star} is a decreasing function of M.
Oppositely, any solution v_{λ} of \mathcal{Q}_{λ} solves \mathcal{P}_{M} with $M=C V @ R_{\alpha}\left(v_{\lambda}\right)$.
[P. Krokhmal, J. Palmquist, and S. Uryasev. Portfolio optimization with conditional value-at-risk objective and constraints. (2001)]

Convex representation of the CV@R

$$
\mathcal{Q}_{\lambda}=\arg \min _{u \in \Delta_{m}}\left\{-\sum_{i=1}^{m} u_{i} \mathbb{E}\left[Z_{i}\right]+\lambda C V @ R_{\alpha}(u)\right\} .
$$

Convex representation of the CV@R

$$
\mathcal{Q}_{\lambda}=\arg \min _{u \in \Delta_{m}}\left\{-\sum_{i=1}^{m} u_{i} \mathbb{E}\left[Z_{i}\right]+\lambda C V @ R_{\alpha}(u)\right\} .
$$

As introduced by Rockafeller and Uryasev (2000),

$$
\begin{aligned}
C V @ R_{\alpha}(u) & =\arg \min _{\theta \in \mathbb{R}} \psi_{\alpha}(u, \theta), \\
& =\arg \min _{\theta \in \mathbb{R}} \theta+\frac{1}{1-\alpha} \mathbb{E}\left[\lfloor\langle Z, u\rangle-\theta\rfloor_{+}\right],
\end{aligned}
$$

where $\lfloor x\rfloor_{+}=\max (0, x)$.
ψ_{α} is the convex coercive Lipschitz continuous and differentiable function.

Convex unconstrained problem

$$
\begin{equation*}
\mathcal{Q}_{\lambda}=\arg \min _{(u, \theta) \in \Delta_{m} \times \mathbb{R}}\left\{p_{\lambda}(u, \theta)\right\}, \tag{1}
\end{equation*}
$$

where the key function p_{λ} is defined by :

$$
\begin{equation*}
p_{\lambda}(u, \theta)=-\sum_{i=1}^{m} u_{i} \mathbb{E}\left[Z_{i}\right]+\lambda\left\{\theta+\frac{1}{1-\alpha} \mathbb{E}\left[\lfloor\langle Z, u\rangle-\theta\rfloor_{+}\right]\right\} \tag{2}
\end{equation*}
$$

Convex unconstrained problem

$$
\begin{equation*}
\mathcal{Q}_{\lambda}=\arg \min _{(u, \theta) \in \Delta_{m} \times \mathbb{R}}\left\{p_{\lambda}(u, \theta)\right\}, \tag{1}
\end{equation*}
$$

where the key function p_{λ} is defined by :

$$
\begin{equation*}
p_{\lambda}(u, \theta)=-\sum_{i=1}^{m} u_{i} \mathbb{E}\left[Z_{i}\right]+\lambda\left\{\theta+\frac{1}{1-\alpha} \mathbb{E}\left[\lfloor\langle Z, u\rangle-\theta\rfloor_{+}\right]\right\} \tag{2}
\end{equation*}
$$

- The function $p_{\lambda}(u, \theta)$ writes as an expectation, Robbins-Monro stochastic algorithms are available,

Robbins Monro algorithms (1951)

Aim : Find y^{*} such that $h\left(y^{*}\right)=0$ when the function $h(y)=\mathbb{E}(H(y, Z))$.
Here, we search for (u, θ) such that $\nabla p_{\lambda}(u, \theta)=0$.

$$
p_{\lambda}(u, \theta)=-\sum_{i=1}^{m} u_{i} \mathbb{E}\left[Z_{i}\right]+\lambda\left\{\theta+\frac{1}{1-\alpha} \mathbb{E}\left[\lfloor\langle Z, u\rangle-\theta\rfloor_{+}\right]\right\}
$$

Assume $\left(Z_{n}\right)_{n \geq 1}$ is a sequence of i.i.d random variables, and $\left(\gamma_{n}\right)_{n \geq 1}$ is a sequence of step sizes such that

$$
\sum \gamma_{n}=+\infty \quad \text { and }, \quad \sum \gamma_{n}^{2}<\infty
$$

Then the Robbins Monro algorithm writes

$$
y_{n+1}=y_{n}-\gamma_{n} H\left(y_{n}, z_{n+1}\right) .
$$

Optimization problem

$$
\mathcal{Q}_{\lambda}=\arg \min _{(u, \theta) \in \Delta_{m} \times \mathbb{R}}\left\{p_{\lambda}(u, \theta)\right\}
$$

where the key function p_{λ} is defined by :

$$
p_{\lambda}(u, \theta)=-\sum_{i=1}^{m} u_{i} \mathbb{E}\left[Z_{i}\right]+\lambda\left\{\theta+\frac{1}{1-\alpha} \mathbb{E}\left[\lfloor\langle Z, u\rangle-\theta\rfloor_{+}\right]\right\}
$$

- The function $p_{\lambda}(u, \theta)$ writes as an expectation, Robbins-Monro stochastic algorithms are available, but
\rightarrow the functions inside the expectation are not smooth.
sub-gradients techniques
\rightarrow we have only access to biaised simulation of the random variables Z.

Optimization problem

$$
\mathcal{Q}_{\lambda}=\arg \min _{(u, \theta) \in \Delta_{m} \times \mathbb{R}}\left\{p_{\lambda}(u, \theta)\right\},
$$

where the key function p_{λ} is defined by :

$$
p_{\lambda}(u, \theta)=-\sum_{i=1}^{m} u_{i} \mathbb{E}\left[Z_{i}\right]+\lambda\left\{\theta+\frac{1}{1-\alpha} \mathbb{E}\left[\lfloor\langle Z, u\rangle-\theta\rfloor_{+}\right]\right\}
$$

- We optimize on $u \in \Delta_{m}$
\rightarrow either project the stochastic gradient descent
\rightarrow use a different strategy that takes the geometry into account. Stochastic mirror descent

(1) Optimization problem

(2) Stochastic biased mirror descent

- Deterministic mirror descent
- Biased simulations
- Results
(3) Approximation of the portfolio
- Model
- Strategy of approximation
- Results
- Numerics

Deterministic mirror descent

The mirror descent was introduced by A. Nemirovkij and D. Yudin (1983).

Main idea :

- avoid projection by changing the metric in the space
- choose a "metric" in which the mirror/proximal mapping is explicit.
A. Beck and M.Teboulle (2003), Mirror descent and nonlinear projected subgradient methods for convex optimization, G. Lan, A. Nemirovskij, and A. Shapiro. (2012.) Validation analysis of mirror descent stochastic approximation method.
Z. Zhou, P. Mertikopoulos, N. Bambos, S. Boyd, and P. Glynn. (2017).

Stochastic mirror descent in variationally coherent optimization problems.

Deterministic miror descent

When we consider the question of minimizing a convex smooth f, the gradient descent writes :

$$
x_{k+1}=x_{k}-\frac{1}{2 \eta_{k}} \nabla f\left(x_{k}\right)
$$

it is equivalent to the proximal problem

$$
x_{k+1}=\arg \min _{x}\left\{\left\langle x, \nabla f\left(x_{k}\right)\right\rangle+\frac{1}{2 \eta_{k}}\left\|x-x_{k}\right\|^{2}\right\}
$$

The mirror descent considers

$$
x_{k+1}=\arg \min _{x}\left\{\left\langle x, \nabla f\left(x_{k}\right)\right\rangle+\frac{1}{\eta_{k}} D\left(x, x_{k}\right)\right\}
$$

where D is a Bregman distance function. [A. Beck and M. Teboulle (2003)]

Bregman distance

We consider the strongly convex negative entropy on Δ_{m} and the L^{2} norm on \mathbb{R} :

$$
\Phi(u, \theta)=\sum_{i=1}^{m} u_{i} \log \left(u_{i}\right)+\frac{\theta^{2}}{2}
$$

The Bregman distance is defined as

$$
D_{\Phi}(u, v)=\Phi(u)-\Phi(v)-\langle\nabla \Phi(v), u-v\rangle .
$$

Deterministic mirror descent

Let $x=(u, \theta)$, then the deterministic mirror descent writes

$$
X_{k+1}=\arg \min _{x \in \Delta_{m} \times \mathbb{R}}\left\{\left\langle\nabla p_{\lambda}\left(X_{k}\right), x-X_{k}\right\rangle+\frac{1}{\eta_{k+1}} D_{\Phi}\left(x, X_{k}\right)\right\} .
$$

This minimization can be made explicit :

$$
X_{k+1}=\binom{U^{k+1}}{\theta^{k+1}} \quad \text { with } \quad\left\{\begin{array}{c}
U^{k+1}=\frac{U^{k} e^{-\eta_{k+1} \partial_{u} p_{\lambda}\left(U^{k}, \theta^{k}\right)}}{\left\|U^{k} e^{-\eta_{k+1} \partial_{u} p_{\lambda}}\left(U^{k}, \theta^{k}\right)\right\|_{1}} \\
\theta^{k+1}=\theta^{k}-\eta_{k+1} \partial_{\theta} p_{\lambda}\left(U^{k}, \theta^{k}\right)
\end{array}\right.
$$

where the first equation has to be understood within a m dimensional vector structure.

Subgradient

Recall that

$$
p_{\lambda}(u, \theta)=-\sum_{i=1}^{m} u_{i} \mathbb{E}\left[Z_{i}\right]+\lambda\left\{\theta+\frac{1}{1-\alpha} \mathbb{E}\left[\lfloor\langle Z, u\rangle-\theta\rfloor_{+}\right]\right\}
$$

Subgradient

If f is a convex function, η is a sub-gradient of f in x_{0} if

$$
\forall x, \quad f(x) \geq f\left(x_{0}\right)+\left\langle\eta, x-x_{0}\right\rangle .
$$

For $f(x)=\max (x, 0)$ we obtain

$$
\partial f(x)=\left\{\begin{array}{l}
1, \text { if } x>0 \\
0, \text { if } x<0 \\
{[0,1], \text { if } x=0}
\end{array}\right.
$$

Subgradient

Recall that

$$
p_{\lambda}(u, \theta)=-\sum_{i=1}^{m} u_{i} \mathbb{E}\left[Z_{i}\right]+\lambda\left\{\theta+\frac{1}{1-\alpha} \mathbb{E}\left[\lfloor\langle Z, u\rangle-\theta\rfloor_{+}\right]\right\}
$$

We will therefore choose

$$
\partial_{u} p_{\lambda}(u, \theta)=\mathbb{E}\left(g_{1}(Z, u, \theta)\right), \quad g_{1}(Z, u, \theta)=-Z+\frac{\lambda}{1-\alpha} Z 1_{\langle Z, u\rangle \geq \theta}
$$

and

$$
\partial_{\theta} p_{\lambda}(u, \theta)=\mathbb{E}\left(g_{2}(Z, u, \theta)\right), \quad g_{2}(Z, u, \theta)=\lambda\left[1-\frac{1}{1-\alpha} 1_{\langle Z, u\rangle \geq \theta}\right]
$$

Our algorithm

Data Step-size sequence $\left(\eta_{n}\right)_{n \geq 0}$ and $U_{0} \in \mathbb{R}, \theta_{0} \in \mathbb{R} ; \alpha \in(0,1)$
Results Two sequences : $X_{k}=\left(U_{k}, \theta_{k}\right)_{k \geq 0}$
for $k=0, \ldots$, do
Simulate the random variable \hat{Z}^{k+1}
Compute a stochastic approximation \hat{g}_{k+1} of $\nabla p_{\lambda}\left(U_{k}, \theta_{k}\right)$ with :

$$
\left\{\begin{array}{l}
\hat{g}_{k+1,1}=-\hat{Z}^{k+1}+\frac{\lambda}{1-\alpha} \hat{Z}^{k+1} 1\left\langle\hat{Z}^{k+1}, U_{k}\right\rangle \geq \theta_{k} \\
\hat{g}_{k+1,2}=\lambda\left[1-\frac{1}{1-\alpha} 1\left\langle\hat{z}^{k+1}, U_{k}\right\rangle \geq \theta_{k}\right]
\end{array} .\right.
$$

Update the algorithm

$$
X_{k+1}=\arg \min _{x \in \Delta_{m} \times \mathbb{R}}\left\{\left\langle\hat{\mathrm{g}}_{k+1}, x-X_{k}\right\rangle+\frac{1}{\eta_{k+1}} D_{\Phi}\left(x, X_{k}\right)\right\} \text { using: }
$$

$$
x_{k+1}=\left(U_{k+1}, \theta_{k+1}\right), \quad \begin{cases}U^{k+1} & =\frac{U^{k} e^{-\eta_{k+1}} \hat{\varepsilon}_{k+1,1}}{\| U^{k} e^{-\eta_{k+1} \hat{1}_{k+1,1} \|_{1}}} . \\ \theta^{k+1} & =\theta^{k}-\eta_{k+1} \hat{g}_{k+1,2}\end{cases}
$$

A first recursion step

A key argument to study the algorithm is to write a recursion inequality on $D_{\phi}\left(x^{*}, X_{k}\right)$.

Starting from

$$
X_{k+1}=\arg \min _{x \in \mathcal{X}}\left\{\left\langle\hat{g}_{k+1}, x-X_{k}\right\rangle+\frac{D_{\phi}\left(x, X_{k}\right)}{\eta_{k+1}}\right\}
$$

we can obtain

$$
D_{\phi}\left(x, X_{k+1}\right) \leq D_{\phi}\left(x, X_{k}\right)+\eta_{k+1}^{2}\left[C_{\alpha}+\left\|\hat{g}_{k+1,1}\right\|^{2}\right]-\eta_{k+1}\left\langle\hat{g}_{k+1}, X_{k}-x\right\rangle .
$$

Drift term

$$
\begin{aligned}
\hat{g}_{k+1} & =\nabla p_{\lambda}\left(X_{k}\right)+\left(\mathbb{E}\left[\hat{g}_{k+1} \mid \mathcal{F}_{k}\right]-\nabla p_{\lambda}\left(X_{k}\right)\right)+\left(\hat{g}_{k+1}-\mathbb{E}\left[\hat{g}_{k+1} \mid \mathcal{F}_{k}\right]\right) \\
& =\nabla p_{\lambda}\left(X_{k}\right)-\mathfrak{b}_{k+1}+\Delta M_{k+1}
\end{aligned}
$$

\mathfrak{b}_{k+1} stands for the bias:

$$
\begin{aligned}
& \mathfrak{b}_{k+1}:=\nabla p_{\lambda}\left(U_{k}, \theta_{k}\right)-\mathbb{E}\left[\hat{g}_{k+1} \mid \mathcal{F}_{k}\right] \\
& =\binom{\mathbb{E}\left[\hat{Z}^{k+1} \mid \mathcal{F}_{k}\right]-\mathbb{E}[Z]+\frac{\lambda}{1-\alpha}\left(\mathbb{E}\left[Z 1_{\left\langle Z, U_{k}\right\rangle \geq \theta_{k}}\right]-\mathbb{E}\left[\hat{Z}^{k+1} 1_{\left\langle\hat{Z}^{k+1}, U_{k}\right\rangle \geq \theta_{k}} \mid \mathcal{F}_{k}\right]\right.}{\mathbb{P}\left(\left\langle Z, U_{k}\right\rangle \geq \theta_{k}\right)-\mathbb{E}\left[1_{\left\langle\hat{Z}^{k+1}, U_{k}\right\rangle \geq \theta_{k}} \mid \mathcal{F}_{k}\right]}
\end{aligned}
$$

Assumptions on the biased simulations

The sequence $\left(\hat{Z}^{k}\right)_{k \geq 0}$ satisfies both :

$$
\mathcal{W}_{1}\left(\mathcal{L}\left(\hat{Z}^{k+1}\right), \mathcal{L}(Z)\right) \leq \delta_{k+1}
$$

where \mathcal{W}_{1} stands for the Wasserstein-1 distance.
$\forall u \in \Delta_{m}, \quad \forall \theta \in \mathbb{R}$,

$$
\left\|\mathbb{E}\left[\langle Z, u\rangle 1_{\langle Z, u\rangle \geq \theta}-\left\langle\hat{Z}^{k+1}, u\right\rangle 1_{\left\langle\hat{Z}^{k+1}, u\right\rangle \geq \theta} \mid \mathcal{F}_{k}\right]\right\| \leq v_{k+1} .
$$

Assumptions on the biased simulations

The sequence $\left(\hat{Z}^{k}\right)_{k \geq 0}$ satisfies both :

$$
\mathcal{W}_{1}\left(\mathcal{L}\left(\hat{Z}^{k+1}\right), \mathcal{L}(Z)\right) \leq \delta_{k+1}
$$

where \mathcal{W}_{1} stands for the Wasserstein-1 distance.
$\forall u \in \Delta_{m}, \quad \forall \theta \in \mathbb{R}$,

$$
\left\|\mathbb{E}\left[\langle Z, u\rangle 1_{\langle Z, u\rangle \geq \theta}-\left\langle\hat{Z}^{k+1}, u\right\rangle 1_{\left\langle\hat{Z}^{k+1}, u\right\rangle \geq \theta} \mid \mathcal{F}_{k}\right]\right\| \leq v_{k+1} .
$$

We deduce that

$$
\mathbb{E}\left[\left\|\mathfrak{b}_{k+1}\right\|\right] \leq 2 \sqrt{\delta_{k+1}}+\delta_{k+1}+\frac{\lambda}{1-\alpha} v_{k+1}
$$

Convergence

(Theorem - Almost sure convergence of the biased SMD)

Assume that $\sum_{k \geq 0} \eta_{k+1}=+\infty$, and $\sum_{k \geq 0} \eta_{k+1}^{2}<+\infty$, and that

$$
\sum_{k \geq 0} \eta_{k+1}\left(\sqrt{\delta_{k+1}}+v_{k+1}\right)<+\infty,
$$

then the Cesaro average \bar{X}_{k}^{η} defined by

$$
\begin{equation*}
\bar{x}_{k}^{\eta}:=\left(\sum_{i=0}^{k} \eta_{i}\right)^{-1}\left(\sum_{i=0}^{k} \eta_{i} X_{i}\right) \tag{3}
\end{equation*}
$$

converges a.s. and

$$
p_{\lambda}\left(\bar{X}_{k}^{\eta}\right) \longrightarrow \min \left(p_{\lambda}\right) \quad \text { a.s. }
$$

Finite horizon controls

$$
\mathrm{D}_{\Phi}^{k}=\mathbb{E} \mathcal{D}_{\Phi}\left(x_{\lambda}^{*}, X_{k}\right)
$$

Coming back to the recursion we can obtain

$$
\begin{equation*}
\mathrm{D}_{\Phi}^{k} \leq \mathrm{D}_{\Phi}^{0} \prod_{i=1}^{k}\left(1+a_{i}\right)+\left(\sum_{j=1}^{k} \frac{b_{j}}{\prod_{i=1}^{j}\left(1+a_{i}\right)}\right) \prod_{i=1}^{k}\left(1+a_{i}\right) \tag{4}
\end{equation*}
$$

where

$$
\begin{gathered}
\mathrm{D}_{\Phi}^{0} \leq \frac{\left(\theta_{0}-V @ R_{\alpha}\left(u_{\lambda}^{\star}\right)\right)^{2}}{2}+\log m:=\left\{\Delta_{\Phi}^{0}\right\}^{2} \\
\left\{\begin{array}{l}
a_{k+1}=2 \eta_{k+1}\left(2 \sqrt{\delta_{k+1}}+\delta_{k+1}+\frac{\lambda v_{k+1}}{1-\alpha}\right) \\
b_{k+1}=C\left(\eta_{k+1}^{2}+\eta_{k+1}\left(2 \sqrt{\delta_{k+1}}+\delta_{k+1}+\frac{\lambda v_{k+1}}{1-\alpha}\right)\right)
\end{array}\right.
\end{gathered}
$$

Finite horizon controls

(Finite-time guarantees)

Recall that $\bar{X}_{k}^{\eta}:=\left(\sum_{i=0}^{k} \eta_{i}\right)^{-1}\left(\sum_{i=0}^{k} \eta_{i} X_{i}\right)$ then for any $n>1$,

$$
\mathbb{E}\left[p_{\lambda}\left(\bar{X}_{n}^{\eta}\right)\right]-p_{\lambda}\left(x_{\lambda}^{\star}\right) \leq\left(\sum_{j=0}^{n-1} \eta_{j+1}\right)^{-1}\left(\mathrm{D}_{\Phi}^{0}+\sum_{k=0}^{n-1}\left[a_{k+1} \mathrm{D}_{\Phi}^{k}+b_{k+1}\right]\right)
$$

where

$$
a_{k+1}=2 \eta_{k+1}\left(2 \sqrt{\delta_{k+1}}+\delta_{k+1}+\frac{\lambda v_{k+1}}{1-\alpha}\right), \quad b_{k+1}=C\left(\eta_{k+1}^{2}+a_{k+1}\right)
$$

SMD with a constant step-size sequence

Consider the step sequence

$$
\eta_{k+1}=\eta>0, \quad \forall 0 \leq k \leq n .
$$

We will also assume a constant upper bound of the bias in the simulation

$$
2 \sqrt{\delta_{k+1}}+\delta_{k+1}+\frac{\lambda v_{k+1}}{1-\alpha}=\omega>0, \quad \forall 1 \leq k \leq n .
$$

For a given $n \in \mathbb{N}$, if (η, ω) are chosen such that
$\eta=\frac{\Delta_{\Phi}^{0}}{2 \sqrt{n+1}} \quad$ and $\quad \omega=\frac{1}{\sqrt{n+1} \Delta_{\Phi}^{0}}$ with $\left\{\Delta_{\Phi}^{0}\right\}^{2}=\frac{\left(\theta_{0}-V @ R_{\alpha}\left(u_{\lambda}^{\star}\right)\right)^{2}}{2}+\log m$, then there exists $C>0$ large enough such that:

$$
\mathbb{E}\left[p_{\lambda}\left(\hat{X}_{n}^{\eta}\right)\right]-p_{\lambda}\left(x_{\lambda}^{\star}\right) \leq C \frac{\left|\theta_{0}-V @ R_{\alpha}\left(u_{\lambda}^{\star}\right)\right|+\sqrt{\log m}}{\sqrt{n+1}} .
$$

(1) Optimization problem

(2) Stochastic biased mirror descent

- Deterministic mirror descent
- Biased simulations
- Results
(3) Approximation of the portfolio
- Model
- Strategy of approximation
- Results
- Numerics

Portfolio model

The portfolio Z contains $m=m^{\prime}+1$ assets

- a return Y obtained as the baseline short-term interest rate Cox-Ingersoll-Ross process $\left(r_{t}\right)_{t \geq 0}$ with no drift,
- a family $\mathbf{S}=\left(S^{1}, \ldots S^{m^{\prime}}\right)$ of $m^{\prime}=m-1$ geometric Brownian motions that encode some risky assets in the portfolio.

Portfolio model

The portfolio Z contains $m=m^{\prime}+1$ assets

- a return Y obtained as the baseline short-term interest rate Cox-Ingersoll-Ross process $\left(r_{t}\right)_{t \geq 0}$ with no drift,
- a family $\mathbf{S}=\left(S^{1}, \ldots S^{m^{\prime}}\right)$ of $m^{\prime}=m-1$ geometric Brownian motions that encode some risky assets in the portfolio.

The CIR short rate model depends on a triple $\left(a, b, \sigma_{0}\right)$

$$
\begin{equation*}
d r_{t}=a\left(b-r_{t}\right) d t+\sigma_{0} \sqrt{r}_{t} d B_{0}(t) \tag{5}
\end{equation*}
$$

where $\left(B_{0}(t)\right)_{t \geq 0}$ stands for a standard real Brownian motion.

- b stands for the long-time mean of the short rate
- a quantifies the strength of the mean-reversion effect.
- σ_{0} is the volatility.

Portfolio model - 2

$$
d r_{t}=a\left(b-r_{t}\right) d t+\sigma_{0} \sqrt{r}_{t} d B_{0}(t)
$$

Then the portfolio $Z_{t}=\left(Y_{t}, S_{t}^{1}, \cdots, S_{t}^{m^{\prime}}\right)$ writes

$$
\forall t \geq 0 \quad \begin{cases}d Y_{t} & =r_{t} Y_{t} d t \tag{6}\\ d S_{t}^{i} & =\mu_{i} S_{t}^{i} d t+\sigma_{i} S_{t}^{i} d B_{i}(t), \quad \forall i \in\left\{1, \ldots, m^{\prime}\right\}\end{cases}
$$

where $\mathrm{B}=\left(B_{0}, B_{1}, \ldots, B_{m^{\prime}}\right)$ refers to a multivariate Brownian motion with correlated components with

$$
\mathbb{E}\left[B_{i}(t) B_{j}(t)\right]=\rho_{i, j} t
$$

Assumptions on the portfolio parameters We assume that:
i) the CIR parameters satisfy $a b>\sigma_{0}^{2}$ and $a>2 \sqrt{2} \sigma_{0}$.
ii) the correlation matrix of the Brownian motions Σ in invertible.

Simulation of the portfolio

Geometric Brownian motion can be exactly simulated.

- Let $W(t)=\left(W_{0}(t), W_{1}(t), \ldots, W_{m^{\prime}}(t)\right)$ be independent standard Brownian paths
- Cholesky decomposition :

$$
L L^{T}=\Sigma \quad \text { and } \quad B(t)=L W(t)
$$

- Finally for $i \in\left\{1, \cdots m^{\prime}\right\}$

$$
S_{1}^{i}=S_{0}^{i} \exp \left(\left(\mu_{i}-\frac{\left(\sigma_{i}\right)^{2}}{2}\right)+\sigma_{i} B_{1}^{i}\right)
$$

Simulation of the CIR

Main issues

$$
\begin{aligned}
& d r_{t}=a\left(b-r_{t}\right) d t+\sigma_{0} \sqrt{r_{t}} d B_{0}(t), \\
& Y(t)=Y_{0} \exp \left(\int_{0}^{t} r_{s} d s\right) .
\end{aligned}
$$

- Even if there exists method to simulate the CIR exactly, the integral needs to be approximated.
- We need to choose an discretization scheme that allows the control of the error in $Z \mathbb{1}_{\langle Z, u\rangle \geq \theta}$.

Simulation of the CIR

Discrete time grid $(k h)_{\{1 \leq k \leq N\}}$ sur $[0,1]$
Drift implicit Euler scheme
$\hat{r}_{(k+1) h}=\left(\frac{\sqrt{\hat{r}_{k h}}+\frac{\sigma_{0}}{2} \Delta B_{0}^{(k)}}{2\left(1+\frac{a h}{2}\right)}+\sqrt{\frac{\left(\sqrt{\hat{r}_{k h}}+\frac{\sigma_{0}}{2} \Delta B_{0}^{(k)}\right)^{2}}{4\left(1+\frac{\partial h}{2}\right)^{2}}+\frac{\left(4 a b-\sigma_{0}^{2}\right) h}{8\left(1+\frac{a h}{2}\right)}}\right)^{2}$.
[Alfonsi (2005), (2013), S. Dereich, A. Neuenkirch, and L. Szpruch (2012)]
The method derives from the SDE satisfied by $y_{t}=\sqrt{r_{t}}$:

$$
\hat{y}_{(k+1) h}=\hat{y}_{k h}+\left(\frac{4 a b-\sigma_{0}^{2}}{8 \hat{y}_{(k+1) h}}-\frac{a}{2} \hat{y}_{(k+1) h}\right) h+\frac{\sigma_{0}}{2} \Delta B_{0}^{(k)},
$$

where $\Delta B_{0}^{(k)}=B_{0}((k+1) h)-B_{0}(k h)$.

Simulation of the CIR

Recall

$$
Y_{1}=Y_{0} \exp \left(\int_{0}^{1} r_{s} d s\right)
$$

We use Rieman integral approximation of $\int_{0}^{1} r_{s} d s$:

$$
\hat{I}_{h}=\frac{1}{N} \sum_{k=1}^{N} \hat{r}_{k h}
$$

and define

$$
\begin{equation*}
\hat{Y}_{1}^{(h)}:=Y_{0} \exp \left(\hat{l}_{h}\right)=Y_{0} \exp \left(\frac{1}{N} \sum_{k=1}^{N} \hat{r}_{k h}\right) . \tag{7}
\end{equation*}
$$

Results on the approximation scheme

(Alfonsi (2013))

Assume $2 a b>\sigma^{2}$ then for any $p \in\left[1, \frac{2 a b}{\sigma^{2}}\right)$,

$$
\left(\mathbb{E}\left[\max _{0 \leq k \leq N}\left|\hat{r}_{k h}-r_{r h}\right|^{p}\right]\right)^{1 / p} \leq K_{p} \sqrt{h}
$$

We need to control

$$
\Delta_{h}=\int_{0}^{1} r_{s} d s-\frac{1}{N} \sum_{k=1}^{N} \hat{r}_{k h} .
$$

(Proposition)

Assume $a b>\sigma_{0}^{2}$ and $a>2 \sqrt{2} \sigma_{0}$, then

$$
\mathbb{E}\left(\left|\Delta_{h}\right|^{2}\right) \leq C \sqrt{h} \quad \mathbb{E}\left(e^{q\left|\delta_{h}\right|}\right)<\infty \quad \forall q<2
$$

Results on the approximation scheme

We have constructed $\hat{Z}_{1}=\left(\hat{Y}_{1}^{(h)}, S_{1}^{1}, \cdots S_{1}^{m^{\prime}}\right)$ using a grid $(k h)_{\{k \leq N\}}$ on $[0,1]$.

(Approximation results)

- A constant C exists (dependent on the CIR parameters) such that :

$$
\mathcal{W}_{1}\left(\mathcal{L}\left(\hat{Z}_{1}\right), \mathcal{L}\left(Z_{1}\right)\right)=\mathcal{W}_{1}\left(\mathcal{L}\left(\hat{Y}_{1}^{(h)}\right), \mathcal{L}\left(Y_{1}\right)\right) \leq C \sqrt{h}
$$

- For any $\epsilon>0$, there exists a constant K_{ϵ} independent of h and m such that :

$$
\left\|\mathbb{E}\left[\left\langle Z_{1}, u\right\rangle 1_{\left\langle Z_{1}, u\right\rangle \geq \theta}-\left\langle\hat{Z}_{1}, u\right\rangle 1_{\left\langle\hat{Z}_{1}, u\right\rangle \geq \theta}\right]\right\|_{2} \leq K_{\epsilon} \sqrt{m} e^{\frac{\left\{\sigma^{+}\right\}^{2} m^{2}}{4 \epsilon^{2}}} h^{\frac{1}{6}-\epsilon} .
$$

SMD at fixed time horizon n

Recall that we assume

- a constant step-size sequence $\eta_{k}=\eta$ for $1 \leq k \leq n$
- a constant discretizaton step-size h

Then h should be chosen as :

$$
h^{1 / 4}+h^{\frac{1}{6}-\epsilon} \sim n^{-1 / 2},
$$

which entails that we could choose a discretization step-size close to n^{-3}.

SMD with decreasing step-size sequence

The second interesting case is choosing

$$
\eta_{k}=k^{-\alpha}, \quad \alpha \in\left(\frac{1}{2}, 1\right] \quad h_{k}=h_{0}^{(m)} k^{-\beta}, \quad \beta>0 .
$$

This lead to

$$
\delta_{k}=k^{-\frac{\beta}{2}} \quad \text { and } \quad v_{k}=K_{\epsilon} \sqrt{m} e^{\frac{\left\{\sigma^{+}+\right\}^{2} m^{2}}{4 \epsilon^{2}}} h^{-\beta\left(\frac{1}{6}-\epsilon\right)} .
$$

The condition for the convergence of the algorithm reads

$$
\sum_{k \geq 1} k^{-\alpha}\left(k^{-\frac{\beta}{4}}+k^{-\beta\left(\frac{1}{6}-\epsilon\right)}\right)<\infty,
$$

which is equivalent to :

$$
\alpha+\frac{\beta}{6}>1, \quad \text { with } \quad \alpha \in\left(\frac{1}{2}, 1\right] .
$$

SMD with decreasing step-size sequence
The second interesting case is choosing

$$
\eta_{k}=k^{-\alpha}, \quad \alpha \in\left(\frac{1}{2}, 1\right) \quad h_{k}=h_{0}^{(m)} k^{-\beta}, \quad \beta>0 .
$$

This lead to

$$
\delta_{k}=k^{-\frac{\beta}{2}} \quad \text { and } \quad v_{k}=K_{\epsilon} \sqrt{m} e^{\frac{\left\{\sigma^{+}+\right\}^{2} m^{2}}{4 \epsilon^{2}}} k^{-\beta\left(\frac{1}{6}-\epsilon\right)} .
$$

In this case, we can obtain the finite horizon controls

$$
\mathbb{E}\left[p_{\lambda}\left(\hat{X}_{n}^{\eta}\right)\right]-p_{\lambda}\left(x_{\lambda}^{\star}\right) \lesssim n^{\alpha-1} D_{\Phi}^{0}+n^{-\alpha \wedge \frac{\beta}{6}} .
$$

SMD with decreasing step-size sequence
The second interesting case is choosing

$$
\eta_{k}=k^{-\alpha}, \quad \alpha \in\left(\frac{1}{2}, 1\right) \quad h_{k}=h_{0}^{(m)} k^{-\beta}, \quad \beta>0 .
$$

This lead to

$$
\delta_{k}=k^{-\frac{\beta}{2}} \quad \text { and } \quad v_{k}=K_{\epsilon} \sqrt{m} e^{\frac{\left\{\sigma^{+}+\right\}^{2} m^{2}}{4 \epsilon^{2}}} k^{-\beta\left(\frac{1}{6}-\epsilon\right)} .
$$

In this case, we can obtain the finite horizon controls

$$
\mathbb{E}\left[p_{\lambda}\left(\hat{X}_{n}^{\eta}\right)\right]-p_{\lambda}\left(x_{\lambda}^{\star}\right) \lesssim n^{\alpha-1} D_{\Phi}^{0}+n^{-\alpha \wedge \frac{\beta}{6}} .
$$

Choosing $\alpha=1 / 2$ and $\beta>3$ allows to recover the convergence rate in \sqrt{n}.

(1) Optimization problem

(2) Stochastic biased mirror descent

- Deterministic mirror descent
- Biased simulations
- Results
(3) Approximation of the portfolio
- Model
- Strategy of approximation
- Results
- Numerics

Simulated data

Figure - Time evolution of the return of the discretized trajectories associated to the assets of the synthetic portfolio (CIR + GBM).

Simulated data

Figure - Composition of the optimal portfolio when λ increases. Left : 3 assets, Right : 8 assets. ER and CV@R are indicated in the legend box of each subfigure.

Some references

- M.C., S. Gadat and L. Huang Portfolio optimization under CV@R constraint with stochastic mirror descent. Preprint hal 2022.
- A. Beck and M.Teboulle, Mirror descent and nonlinear projected subgradient methods for convex optimization. Operations Research Letters, 2003.
- G. Lan, A. Nemirovskij, and A. Shapiro. Validation analysis of mirror descent stochastic approximation method. Math. Program., Ser. A, 2012.,
- Z. Zhou, P. Mertikopoulos, N. Bambos, S. Boyd, and P. Glynn. Stochastic mirror descent in variationally coherent optimization problems. Advances in Neural Information Processing Systems, 30, 2017.
- A. Alfonsi. On the discretization schemes for the cir (and bessel squared) processes. Monte Carlo Methods and Applications, 2005.
- A. Alfonsi. Strong order one convergence of a drift implicit euler scheme : Application to the cir process. Statistics \& Probability Letters, 2013.
- S. Dereich, A. Neuenkirch, and L. Szpruch. An Euler-type method for the strong approximation of the cox ingersoll ross process. Proceedings of the Royal Society A : Mathematical, Physical and Engineering Sciences, 2012.
Thank you for your attention!

